Computing Rational Isogenies with Irrational Kernel Points

Gustavo Banegas¹, Valerie Gilchrist², Anaëlle Le Devehat³, Benjamin Smith ³

Qualcomm France SARL, Valbonne, France

Université Libre de Bruxelles and FNRS, Brussels, Belgium

Inria and Laboratoire d'Informatique de l'École polytechnique, Institut Polytechnique de Paris, Palaiseau, France

April 12, 2023

A separable isogeny can be defined uniquely (up to isomorphism) by its kernel.

With a cyclic kernel, this means we require only one point (the generator of the kernel) to define an isogeny.

Isogeny-based cryptosystems such as CSIDH and CRS evaluate points at separable isogenies.

Irrational kernels

We want to compute an isogeny of degree ℓ , whose domain is $E(\mathbb{F}_q)$. Usually, we will look for a point of order ℓ to generate its kernel.

Suppose no point P of order ℓ is defined over $E(\mathbb{F}_q)$, so we go to $E(\mathbb{F}_{q^k})$ to find it. We say $\langle P \rangle$ is *irrational*.

That is, the kernel of our isogeny will be defined over \mathbb{F}_q , but its elements will not be.

Vélu requires the kernel points, so this will be costly to run over an extension field.

Kernel polynomials

The *kernel polynomial* of an isogeny is used in Vélu's formulæ, given by

$$D(X) := \prod_{P \in S} (X - x(P))$$

where $S \subset \langle P \rangle$ is any subset such that

$$S \cap -S = \emptyset$$
 and $S \cup -S = \langle P \rangle \setminus \{0\}$.

Note, D will not always split over the base field, but its coefficients will always be defined over it.

Take $\ell = 13$ and k = 3.

We want to choose a set $S \subset \langle P \rangle$, that contains all multiples of P up to negation (excluding the identity) for use in our kernel polynomial.

Some classic examples are taking the first half or odd multiples.

Take $\ell = 13$ and k = 3.

We want to choose a set $S \subset \langle P \rangle$, that contains all multiples of P up to negation (excluding the identity) for use in our kernel polynomial.

Some classic examples are taking the first half or odd multiples.

P 2P 3P 4P 5P 6P 7P 8P 9P 10P 11P 12P

Take $\ell = 13$ and k = 3.

We want to choose a set $S \subset \langle P \rangle$, that contains all multiples of P up to negation (excluding the identity) for use in our kernel polynomial.

Some classic examples are taking the first half or odd multiples.

Take $\ell = 13$ and k = 3.

We want to choose a set $S \subset \langle P \rangle$, that contains all multiples of P up to negation (excluding the identity) for use in our kernel polynomial.

Some classic examples are taking the first half or odd multiples.

For example, choose

$$S = \{P, [2]P, [3]P, \dots, [(\ell - 1)/2]P\}$$

This method would use one xDBL to get [2]P, and $(\ell - 1)/2 - 2 = (\ell - 5)/2$ xADD's.

Another approach...

P 2P 3P 4P 5P 6P 7P 8P 9P 10P 11P 12P

Another approach...

Another approach...

P 2P 4P 8P 3P 6P 12P 11P 9P 5P 10P 7P

Another approach...

Another approach...

This uses $(\ell - 3)/2$ xDBL's.

We say *n* is a *primitive root* modulo ℓ if every *a* coprime to ℓ can be written as $a = n^i$, for some *i*.

We get the following lemma:

Lemma

If 2 is a primitive root modulo ℓ then

 $S = \{ [2^i] P : 0 \le i < (\ell - 1)/2 \}.$

This Lemma can be extended to the case where 2 is semi-primitive (has order $\frac{\ell-1}{2}$) with added constraints on ℓ .

How (semi)primitive is 2?

1

How often is 2 (semi)primitive modulo ℓ ? For prime $3 \le \ell < 10000$, roughly 57%.

	Primes $2 < \ell < 600$										
	3	5	7	11	13	19	23	29	37	47	53
	59	61	67	71	79	83	101	103	107	131	139
	149	163	167	173	179	181	191	197	199	211	227
Yes	239	263	269	271	293	311	317	347	349	359	367
	373	379	383	389	419	421	443	461	463	467	479
	487	491	503	509	523	541	547	557	563	587	599
	17	31	41	43	73	89	97	109	113	127	137
	151	157	193	223	229	233	241	251	257	277	281
No	283	307	313	331	337	353	397	401	409	431	433
	439	449	457	499	521	569	571	577	593		

Table: Primes in bold appear in the CSIDH-512 parameter set.

Scalar multiplication : $1xDBL + \frac{\ell-5}{2}xADD$

Doubling : $\frac{\ell-3}{2}$ xDBL

Model	xADD	xDBL
Montgomery	4M + 2S	2M + 2S + 1c
Short Weierstrass (projective)	11M + 5S	1M + 8S + 1c

Table: Costs of xADD and xDBL. Here M and S represent multiplication and squaring, respectively, in \mathbb{F}_{q^k} , while c represents multiplication by a curve constant in \mathbb{F}_q

When k = 1, we get $M \approx c$, so we get a saving of around 16%.

Valerie Gilchrist

P is a point of order ℓ defined over $E(\mathbb{F}_{q^k})$ (and not over any proper subfield containing \mathbb{F}_q).

 $\langle P \rangle$ is Galois stable, so Frobenius acts as an eigenvalue, λ , on $\langle P \rangle$.

$$P \mapsto \pi(P) \mapsto \pi^{2}(P) \mapsto \cdots \pi^{k-1}(P)$$
$$P \mapsto \lambda P \mapsto \lambda^{2}P \mapsto \cdots \lambda^{k-1}P$$

This λ must be nonzero, and in fact it must be an element of order k in $(\mathbb{Z}/\ell\mathbb{Z})^{\times}$.

```
Take \ell = 13 and k = 3.

\pi must act as either [3] or [9] on \langle P \rangle: let's suppose it is [3]...
```

```
Take \ell = 13 and k = 3.

\pi must act as either [3] or [9] on \langle P \rangle: let's suppose it is [3]...
```

```
P 2P 3P 4P 5P 6P 7P 8P 9P 10P 11P 12P
```

Take $\ell = 13$ and k = 3. π must act as either [3] or [9] on $\langle P \rangle$: let's suppose it is [3]...


```
Take \ell = 13 and k = 3.

\pi must act as either [3] or [9] on \langle P \rangle: let's suppose it is [3]...
```

P 3P 9P 2P 6P 5P 4P 12P 10P 8P 11P 7P

Take $\ell = 13$ and k = 3. π must act as either [3] or [9] on $\langle P \rangle$: let's suppose it is [3]...


```
Take \ell = 13 and k = 3.

\pi must act as either [3] or [9] on \langle P \rangle: let's suppose it is [3]...
```


So we can write

$$S = S_0 \sqcup \pi(S_0) \sqcup \cdots \sqcup \pi^{k'-1}(S_0)$$

where S_0 is the set of points that generate the galois orbits (up to negation) and

$$k' := egin{cases} k & ext{if } k ext{ is odd }, \ k/2 & ext{if } k ext{ is even }. \end{cases}$$

Lemma

If 2 is primitive modulo ℓ (or some other conditions) then $S_0 = \{[2^i]P : 0 \le i < (\ell - 1)/2k'\}$.

From before, let $\ell = 13, k = 3$. This gives us $S_0 = \{ [2^i]P : 0 \le i < 12/6 \} = \{ P, 2P \}.$

Evaluating the kernel polynomial with S_0

$$D(X) = \prod_{P \in S} (X - x(P)) = \prod_{P \in S_0} \prod_{i=0}^{k'-1} (X - x(\pi^i(P)))$$
$$= \prod_{P \in S_0} \prod_{i=0}^{k'-1} (X - x(P)^{q^i}),$$

Transposing the order of the products, if we let

$$D_0(X) := \prod_{P \in S_0} (X - x(P))$$

then

$$D(\alpha) = (D_0(\alpha))^{1+2+\cdots(k'-1)}$$
 for all $\alpha \in \mathbb{F}_q$.

Some preliminary results

We use an algorithm due to Costello and Hisil (2017) as a base for comparison.

They derive the following affine formula

$$f(x) = x \cdot \left(\prod_{i=1}^{(\ell-1)/2} \left(\frac{x \cdot x_{[i]P} - 1}{x - x_{[i]P}}\right)\right)^2$$

which results in this projective formula

$$X' = X \cdot \left(\prod_{i=1}^{(\ell-1)/2} (X \cdot X_i - Z_i \cdot Z)\right)^2, Z' = Z \cdot \left(\prod_{i=1}^{(\ell-1)/2} (X \cdot Z_i - X_i \cdot Z)\right)^2$$

This work was later generalized to the even case by Renes (2018).

Some preliminary results

We compare the algorithms using operation counts over the extension field.

Some examples when 2 is primitive...

ℓ	k		multiplies	adds	squarings
7	3	Costello-Hisil	20	17	7
		Galois orbits	2	4	8
29	7	Costello-Hisil	108	105	29
		Galois orbits	8	12	48
53	13	Costello-Hisil	204	201	53
		Galois orbits	8	18	107

We want to find a point $P \in E(\mathbb{F}_{q^k})$ of order ℓ .

One approach would be:

- 1. sample a random $P \in E(\mathbb{F}_{q^k})$
- 2. compute $P_{\ell} = [\#E(\mathbb{F}_{q^k})/\ell]P$
- 3. compute $Order(P_{\ell})$, which is either 0 or ℓ

Take k = 3.

$$E(\mathbb{F}_{q^3})\cong E(\mathbb{F}_q)\oplus H_3$$

Note, π^3 fixes all points in $E(\mathbb{F}_{q^3})$, and π fixes all the points in $E(\mathbb{F}_q)$. That is, $E(\mathbb{F}_{q^i}) = \ker(\pi^i - [1])$.

So we proceed by:

- 1. sample $P \in E(\mathbb{F}_{q^k})$
- 2. compute $P_H = (\pi 1)P$
- 3. compute $P_{\ell} = [\#H_3/\ell]P_H$
- 4. check the order of P_ℓ

This saves us around 1/3 of the multiplications.

Take k = 6.

$$E(\mathbb{F}_q) \subset \frac{E(\mathbb{F}_{q^2})}{C} \subset E(\mathbb{F}_{q^6})$$
$$E(\mathbb{F}_{q^3}) \subset E(\mathbb{F}_{q^6})$$

$$egin{aligned} & E(\mathbb{F}_{q^2}) = \ker(\pi^2 - [1]) \ & E(\mathbb{F}_{q^3}) = \ker(\pi^3 - [1]) \end{aligned}$$

 $\delta_6 := (\pi + [1])(\pi^3 - [1])$

As before, we do the following:

- 1. sample $P \in E(\mathbb{F}_{q^k})$
- 2. compute $P_H = \delta_6 P$
- 3. compute $P_{\ell} = [\#H_6/\ell]P_H$
- 4. check the order of P_ℓ

This saves around 2/3 of the multiplications.

Formalizing...

$$\eta_k := \Phi_k(\pi) \in \mathsf{End}(E)$$

where $\Phi_k(X)$ is the *k*-th cyclotomic polynomial (that is, the minimal polynomial over \mathbb{Z} of the primitive *k*-th roots of unity in $\overline{\mathbb{Q}}$).

So we define

$$\delta_k := (\pi^k - [1])/\eta_k \in \mathsf{End}(E)$$

and get that $\delta_k(E(\mathbb{F}_{q^k})) \subset H_k$.

Lemma

If k is even, then every point P in H_k has x(P) in $\mathbb{F}_{a^{k/2}}$.

In the case k = 2, this is known as the "twist trick".

k	$\#H_k$	δ_k
1	1	
2	$q + O(\sqrt{q})$	$\pi-$ [1]
3	$q^2 + O(q^{3/2})$	$\pi - [1]$
4	$q^2+O(q)$	$\pi^2 - [1]$
5	$q^4 + O(q^{7/2})$	$\pi - [1]$
6	$q^2 + O(q^{3/2})$	$(\pi + [1])(\pi^3 - [1])$
7	$q^6 + O(q^{7/2})$	$\pi - [1]$
8	$q^4 + O(q^2)$	$\pi^{4} - [1]$
9	$q^{6} + O(q^{4/2})$	$\pi^{3} - [1]$
10	$q^4 + O(q^{7/2})$	$(\pi + [1])(\pi^5 - [1])$
11	$q^{10} + O(q^{19/2})$	$\pi - [1]$
12	$q^4 + O(q^3)$	$(\pi^2 + [1])(\pi^6 - [1])$

Evaluated kernel polynomials

- doubling trick (and its cost)
- exploiting the action of frobenius

Computed the kernel generator

eprint coming soon...