# Another Look at the Quantum Security of the Vectorization Problem with Shifted Inputs

Joint work with P. Frixons, V. Gilchrist, P. Kutas, S. Merz, C. Petit\*, L. Pham

ePrint 2025/376

# Vectorization problem with shifted inputs

Group actions are attractive for building post-quantum crypto

$$\star: G \times X \to X$$

If G is commutative, then DH follows naturally

# Vectorization problem with shifted inputs

Underlying this scheme is the Vectorization problem

The Vectorization problem:

Given x and  $g \star x$ , recover g.

-"core" DLP problem

-underlies CSIDH

# Vectorization problem with shifted inputs

The Vectorization problem with shifted inputs:

Given x,  $(c_i, [c_i]g \star x)$  and  $g \star x$ , recover g.

- -variant of vectorization that publishes more information
- -underlies CSI-SharK and BCP

How does the security compare to pure vectorization?

## CSIDH

Choose a prime *p* 

Let  $X=\{$  supersingular curves defined over  $\mathbb{F}_p\}$  (up to isomorphism)

For  $E \in X$  let  $End_{\mathbb{F}_p}(E)$  be the set of endomorphisms defined over  $\mathbb{F}_p$ 

Let G be the class group of  $End_{\mathbb{F}_p}(E)$ 

## CSIDH

Choose a prime *p* 

Let  $X = \{$  supersingular curves defined over  $\mathbb{F}_p \}$  (up to isomorphism)

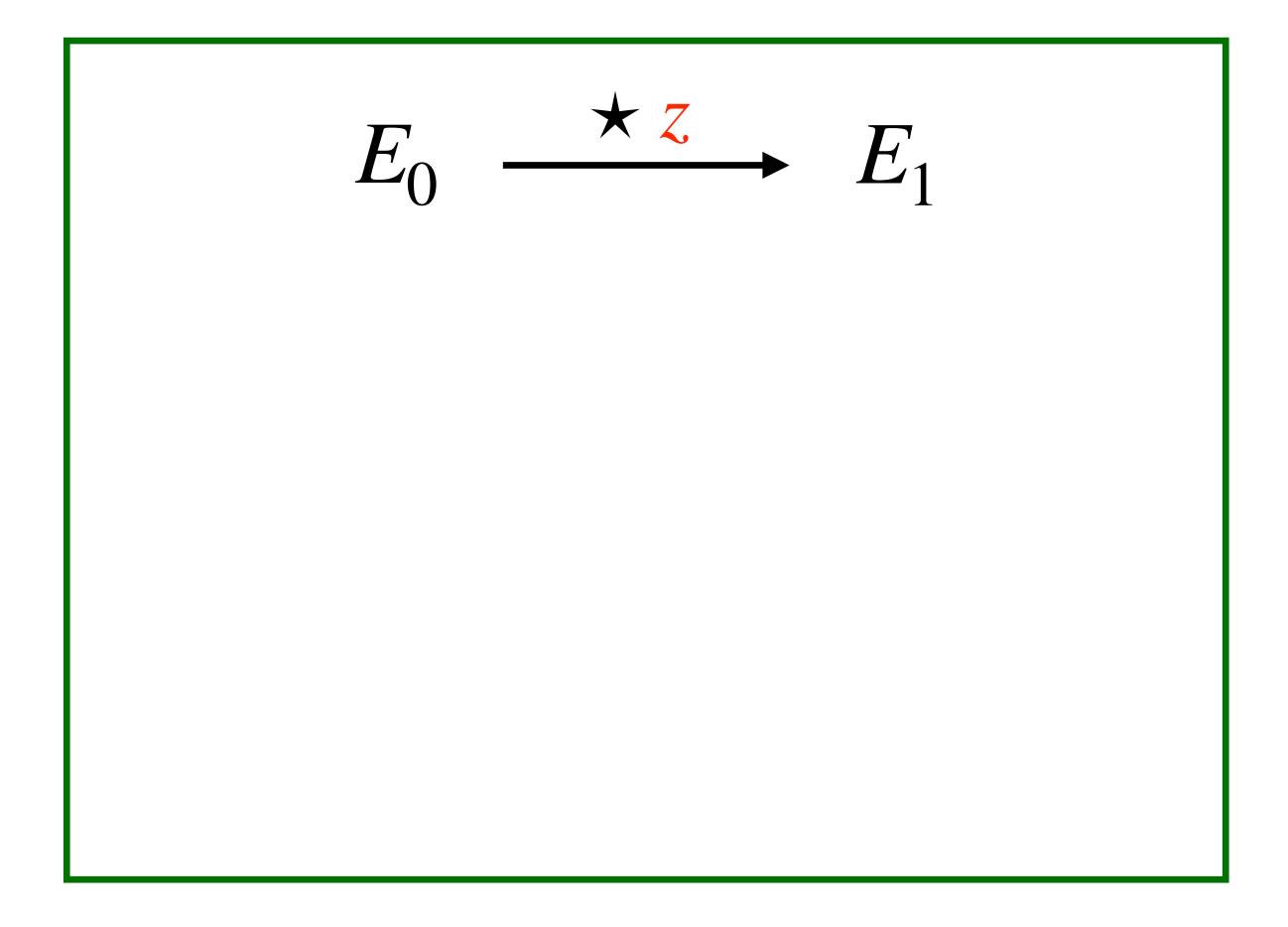
For  $E \in X$  let  $End_{\mathbb{F}_p}(E)$  be the set of endomorphisms defined over  $\mathbb{F}_p$ 

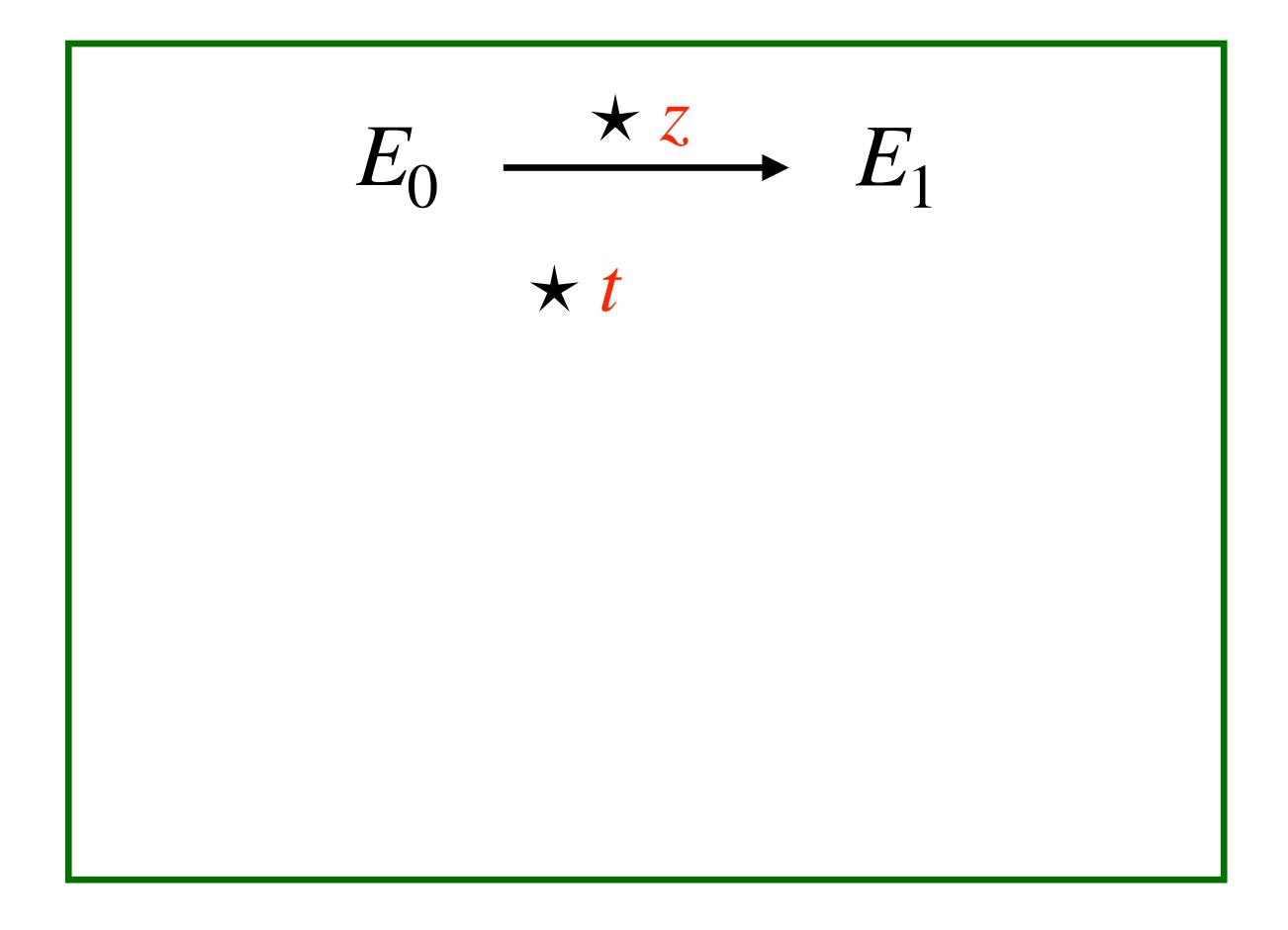
Let G be the class group of  $End_{\mathbb{F}_p}(E)$ 

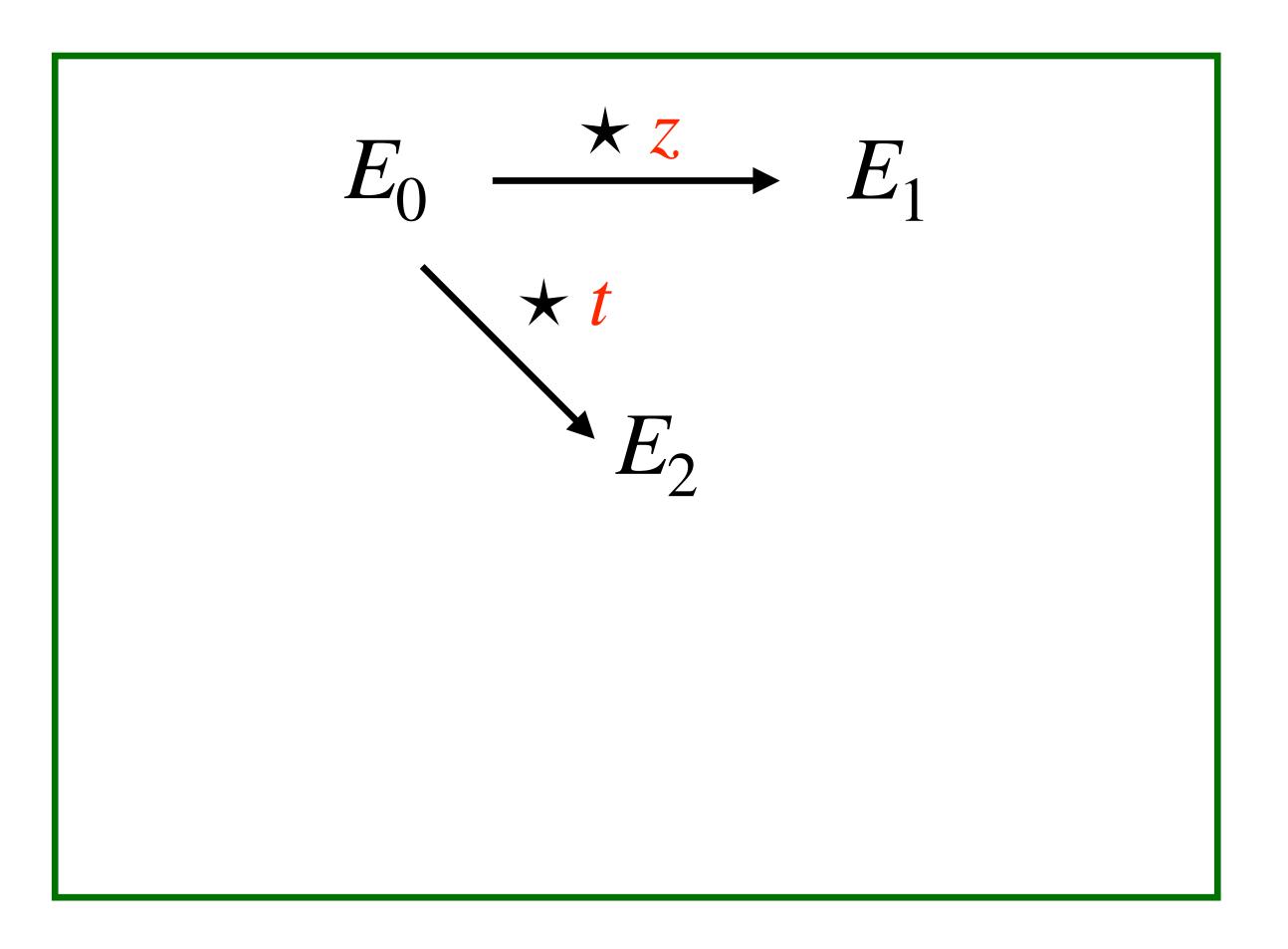
let g be a generator of G

Then we can identify G with  $(\mathbb{Z}_N, +)$  where N := |G|

$$g^z \star E = E'$$



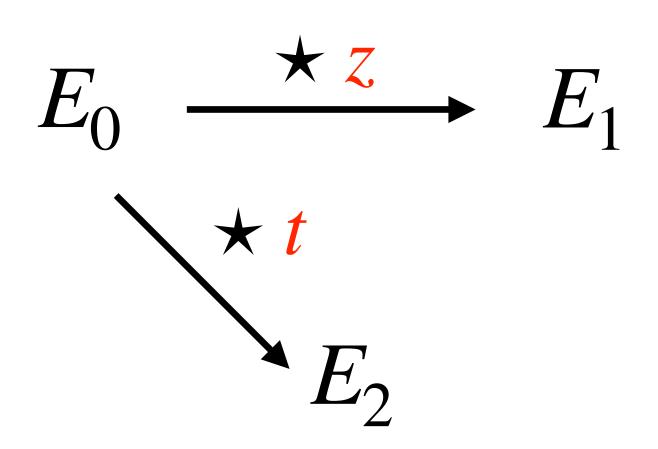




Based on the CSI-FiSh signature with id protocol:



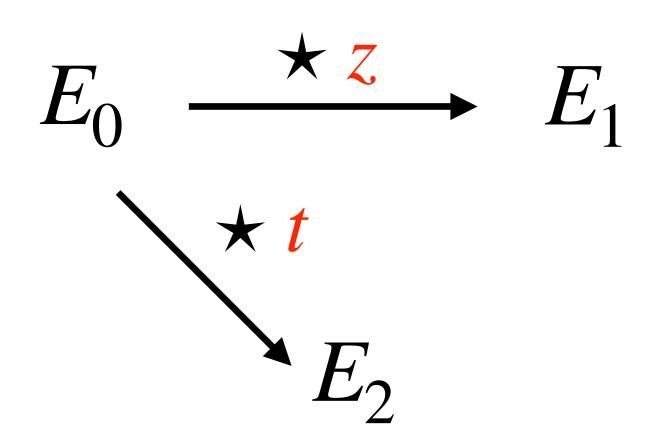
-the verifier sends challenge bit b



- -the verifier sends challenge bit b
- -the prover sends u such that

$$E_2 = u \star E_b$$

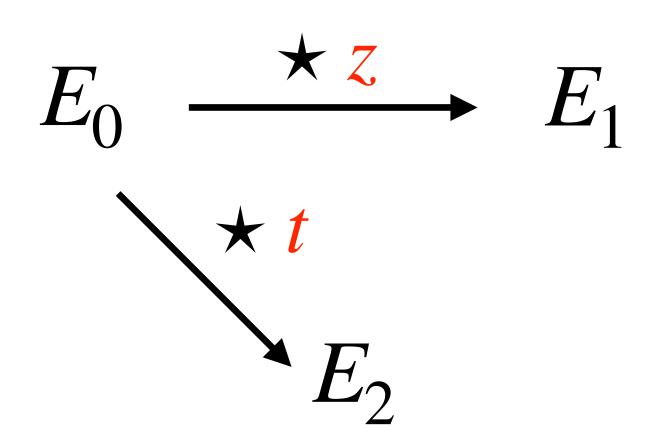
Based on the CSI-FiSh signature with id protocol:



- -the verifier sends challenge bit b
- -the prover sends u such that

$$E_2 = u \star E_b$$

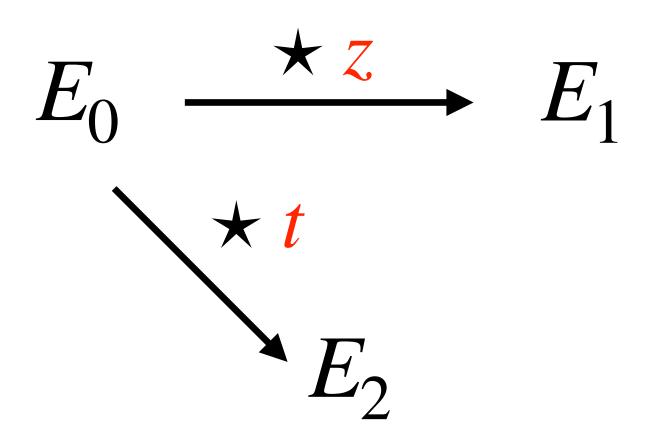
-soundness error 1/2



- -the verifier sends challenge bit b
- -the prover sends u such that

$$E_2 = u \star E_b$$

- -soundness error 1/2
- -use multiple secret keys  $z_i$  to reduce soundness



- -the verifier sends challenge bit b
- -the prover sends u such that

$$E_2 = u \star E_b$$

- -soundness error 1/2
- -use multiple secret keys  $z_i$  to reduce soundness
- -use **related keys** e.g.  $z_i = c_i z$  to reduce key size and facilitate secret sharing

Given  $(E_i = g^{c_i z} \star E_0, c_i)$  for several i, compute z.

 $c_0 = 0$ , and it was suggested to use  $c_i = i$ 

Given ( $E_i = g^{c_i z} \star E_0$ ,  $c_i$ ) for several i, compute z.

 $c_0 = 0$ , and it was suggested to use  $c_i = i$ 

Using only  $(E_0, E_j)$  for some  $j \neq 0$  is exactly Vectorization

Given ( $E_i = g^{c_i z} \star E_0$ ,  $c_i$ ) for several i, compute z.

 $c_0 = 0$ , and it was suggested to use  $c_i = i$ 

Using only  $(E_0, E_j)$  for some  $j \neq 0$  is exactly Vectorization

If  $c_i \mid N$  then the problem can be reduced to a subgroup problem

Given ( $E_i = g^{c_i z} \star E_0$ ,  $c_i$ ) for several i, compute z.

 $c_0 = 0$ , and it was suggested to use  $c_i = i$ 

Using only  $(E_0, E_j)$  for some  $j \neq 0$  is exactly Vectorization

If  $c_i \mid N$  then the problem can be reduced to a subgroup problem

If N is prime, then is the problem as hard as Vectorization?

# Quantum security of CSIDH

Shor does not apply and Grover is too slow

Instead, we can frame it as a hidden shift problem:

Let  $f_0, f_1: G \to X$ , such that for some z, we have  $f_1(x) = f_0(x-z)$  for all x. Given black box access to  $f_0, f_1$ , compute z.

# Quantum security of CSIDH

Shor does not apply and Grover is too slow

Instead, we can frame it as a hidden shift problem:

Let  $f_0, f_1: G \to X$ , such that for some z, we have  $f_1(x) = f_0(x-z)$  for all x. Given black box access to  $f_0, f_1$ , compute z.

For CSIDH we may define functions

$$f_0: g' \mapsto g' \star (g^z \star E),$$
 $f_1: g' \mapsto g' \star E$ 

High level recipe:

#### 1. Create and label objects

$$y, |f(y)\rangle$$

2. "Combine" "good" objects

$$(x-y), |f(x-y)\rangle$$

3. Extract

Example [1]:  $N = 2^n$ 

1. Create and label objects

2. "Combine" "good" objects

3. Extract

[1] Regev. A subexponential time algorithm for the dihedral hidden subgroup problem with polynomial space. 2004

Example [1]:  $N = 2^n$ 

#### 1. Create and label objects

$$y, |0\rangle + e^{(2\pi i/N)zy} |1\rangle$$
 (z is secret)

2. "Combine" "good" objects

3. Extract

[1] Regev. A subexponential time algorithm for the dihedral hidden subgroup problem with polynomial space. 2004

[1] Regev. A subexponential time algorithm for the dihedral hidden subgroup problem with polynomial space. 2004

# Kuperberg

Example [1]:  $N = 2^n$ 

#### 1. Create and label objects

$$y, |0\rangle + e^{(2\pi i/N)zy} |1\rangle$$
 (z is secret)

#### 2. "Combine" "good" objects

Via tensoring : 
$$y_2 - y_1$$
,  $|0\rangle + e^{(2\pi i/N)z(y_2 - y_1)}|1\rangle$ 

#### 3. Extract

Example [1]:  $N = 2^n$ 

#### 1. Create and label objects

$$y, |0\rangle + e^{(2\pi i/N)zy} |1\rangle$$
 (z is secret)

#### 2. "Combine" "good" objects

Via tensoring : 
$$y_2 - y_1$$
,  $|0\rangle + e^{(2\pi i/N)z(y_2 - y_1)}|1\rangle$ 

#### 3. Extract

After enough repetitions, we get a label equal to  $2^{n-1}$ , so :

$$|0\rangle + e^{(2\pi i/N)z^{2^{n-1}}}|1\rangle = |0\rangle + e^{\pi iz}|1\rangle$$

Measuring (in the Hadamard basis) gives z

# Cost of running Kuperberg

Subexponential complexity

Cost of a quantum attack on CSIDH was estimated by Peikert

One group action evaluation is expensive,
 and requires sub exponentially many

# Childs-van Dam algorithm

Suppose access to pairs  $(E_i = g^{iz} \star E_0, i)$  for  $i \in [0,M]$ 

Suppose access to pairs  $(E_i = g^{iz} \star E_0, i)$  for  $i \in [0,M]$ 

In the CSIDH setting, we can *twist* efficiently: i.e. compute  $E_i^t := g^{-iz} \star E_0 = E_{-i}$ 

Suppose access to pairs  $(E_i = g^{iz} \star E_0, i)$  for  $i \in [0,M]$ 

In the CSIDH setting, we can *twist* efficiently: i.e. compute  $E_i^t := g^{-iz} \star E_0 = E_{-i}$ 

Suppose access to pairs  $(E_i = g^{iz} \star E_0, i)$  for  $i \in [0,M]$ 

In the CSIDH setting, we can *twist* efficiently: i.e. compute  $E_i^t := g^{-iz} \star E_0 = E_{-i}$ 

Define 
$$f: [-M, M] \times \mathbb{Z}_N \to X$$
 
$$(i, x) \mapsto g^x \star E_{-i}$$

Suppose access to pairs  $(E_i = g^{iz} \star E_0, i)$  for  $i \in [0,M]$ 

In the CSIDH setting, we can *twist* efficiently: i.e. compute  $E_i^t := g^{-iz} \star E_0 = E_{-i}$ 

Define 
$$f: [-M, M] \times \mathbb{Z}_N \to X$$
 
$$(i, x) \mapsto g^x \star E_{-i}$$

$$\implies f(i,x) = g^x \star E_{-i}$$

Suppose access to pairs  $(E_i = g^{iz} \star E_0, i)$  for  $i \in [0,M]$ 

In the CSIDH setting, we can *twist* efficiently: i.e. compute  $E_i^t := g^{-iz} \star E_0 = E_{-i}$ 

Define 
$$f: [-M, M] \times \mathbb{Z}_N \to X$$
 
$$(i, x) \mapsto g^x \star E_{-i}$$

$$\implies f(i,x) = g^x \star E_{-i} = g^x \star (g^{-iz} \star E_0)$$

Suppose access to pairs  $(E_i = g^{iz} \star E_0, i)$  for  $i \in [0,M]$ 

In the CSIDH setting, we can *twist* efficiently: i.e. compute  $E_i^t := g^{-iz} \star E_0 = E_{-i}$ 

Define 
$$f: [-M, M] \times \mathbb{Z}_N \to X$$
 
$$(i, x) \mapsto g^x \star E_{-i}$$

$$\implies f(i,x) = g^x \star E_{-i} = g^x \star (g^{-iz} \star E_0) = g^{x-iz} \star E_0$$

Suppose access to pairs  $(E_i = g^{iz} \star E_0, i)$  for  $i \in [0,M]$ 

In the CSIDH setting, we can *twist* efficiently: i.e. compute  $E_i^t := g^{-iz} \star E_0 = E_{-i}$ 

Define 
$$f: [-M, M] \times \mathbb{Z}_N \to X$$
 
$$(i, x) \mapsto g^x \star E_{-i}$$

$$\implies f(i,x) = g^x \star E_{-i} = g^x \star (g^{-iz} \star E_0) = g^{x-iz} \star E_0 = f(0,x-iz)$$

Suppose access to pairs  $(E_i = g^{iz} \star E_0, i)$  for  $i \in [0,M]$ 

In the CSIDH setting, we can *twist* efficiently: i.e. compute  $E_i^t := g^{-iz} \star E_0 = E_{-i}$ 

This implies access to pairs  $(E_i = g^{iz} \star E_0, i)$  for  $i \in [-M, M]$ 

Define 
$$f: [-M, M] \times \mathbb{Z}_N \to X$$
 
$$(i, x) \mapsto g^x \star E_{-i}$$

"generalized"

hidden shif

$$\implies f(i,x) = g^x \star E_{-i} = g^x \star (g^{-iz} \star E_0) = g^{x-iz} \star E_0 = f(0,x-iz)$$

#### 1. Create and label objects

Apply **BuildSuperposition** to get (with known label,  $y_i$ )

$$\sum_{i_1,\ldots,i_k\in[-M,M]} \omega^{\sum_j i_j y_j z} | i_1,\ldots i_k \rangle$$

#### 2. "Combine" "good" objects

Compute 
$$\alpha := \sum_j i_j y_j \mod N$$
 in a new register to get 
$$\sum_j \omega^{\alpha z} |i_1, \ldots i_k\rangle |\alpha\rangle$$
  $i_1, \ldots i_k \in [-M,M]$ 

#### 2. "Combine" "good" objects

Compute 
$$lpha:=\sum_j i_j y_j \bmod N$$
 in a new register to get 
$$\sum_j \omega^{\alpha z} \, |\, i_1, \ldots i_k \rangle \, |\, \alpha \rangle$$
  $i_1, \ldots i_k \in [-M,M]$ 

Apply Knapsack to get a state close to

$$\sum_{\alpha \in \mathbb{Z}_N} \omega^{\alpha z} |0,...0\rangle |\alpha\rangle$$

#### 3. Extract

Apply QFT inverse over  $\mathbb{Z}_N$  on last register to get a state close to

$$|0,...0\rangle|z\rangle$$

Measure last register and check answer

#### Subroutines

BuildSuperposition: can be computed using QFTs

#### Subroutines

BuildSuperposition: can be computed using QFTs

Knapsack: CvD solves using integer programming

-asymptotic complexity, out-dated solution

Recall,

Given  $y_1, ..., y_k, \alpha, N$ , we want to compute

$$i_1, \dots i_k \in [-M, M]$$
 such that

$$\sum_{j} i_{j} y_{j} = \alpha \mod N$$

- -infinity norm
- -average case v.s. worst case
- -target  $\alpha$  in superposition
- -the  $y_j$  classical, known

When  $\alpha = 0$ ,

When  $\alpha = 0$ ,

$$\Lambda_0(\mathbf{y}) := \{ \mathbf{x} \in \mathbb{Z}^k : \langle \mathbf{x}, \mathbf{y} \rangle = 0 \bmod N \}$$

When  $\alpha = 0$ ,

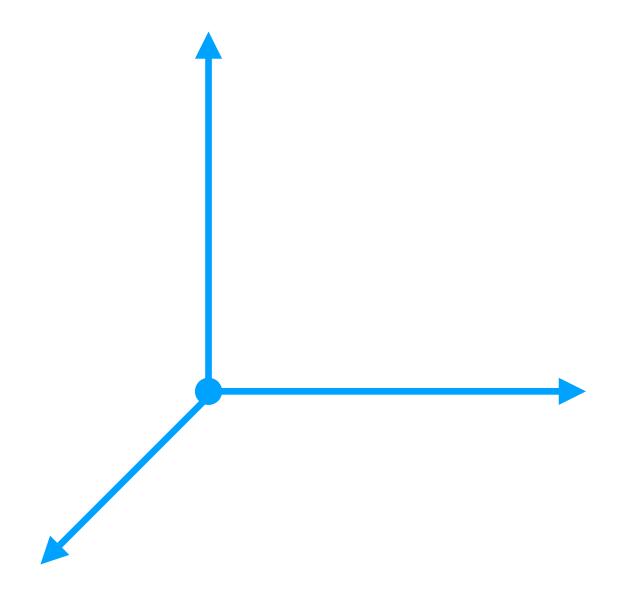
$$\Lambda_0(\mathbf{y}) := \{ \mathbf{x} \in \mathbb{Z}^k : \langle \mathbf{x}, \mathbf{y} \rangle = 0 \bmod N \}$$

We want  $S_{\alpha}^{\mathbf{y}} := \Lambda_0(\mathbf{y}) \cap [-M, M]^k$ 

When  $\alpha = 0$ ,

$$\Lambda_0(\mathbf{y}) := \{ \mathbf{x} \in \mathbb{Z}^k : \langle \mathbf{x}, \mathbf{y} \rangle = 0 \bmod N \}$$

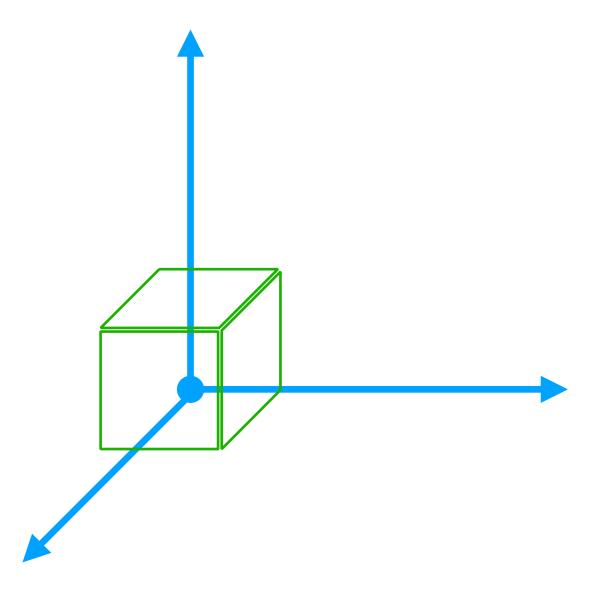
We want 
$$S^{\mathbf{y}}_{\alpha} := \Lambda_0(\mathbf{y}) \cap [-M, M]^k$$



When  $\alpha = 0$ ,

$$\Lambda_0(\mathbf{y}) := \{ \mathbf{x} \in \mathbb{Z}^k : \langle \mathbf{x}, \mathbf{y} \rangle = 0 \bmod N \}$$

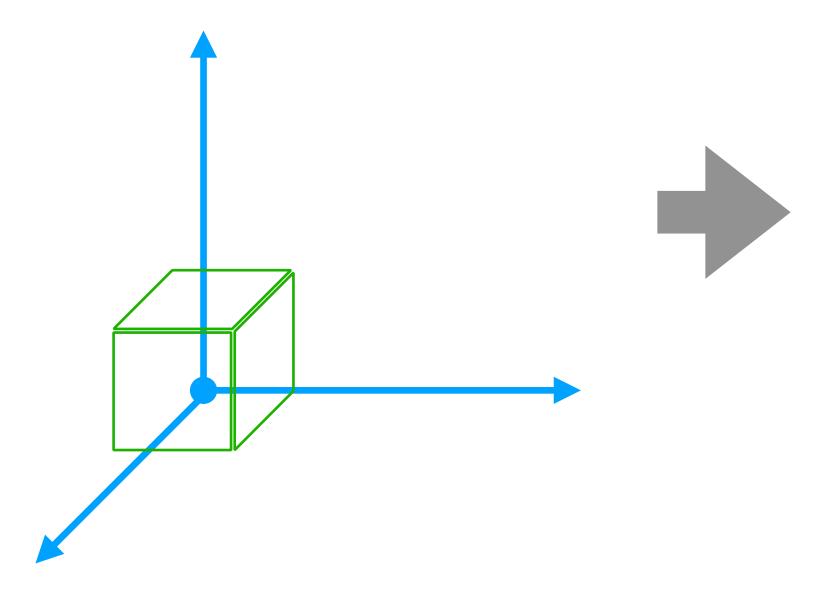
We want 
$$S^{\mathbf{y}}_{\alpha} := \Lambda_0(\mathbf{y}) \cap [-M, M]^k$$



When  $\alpha = 0$ ,

$$\Lambda_0(\mathbf{y}) := \{ \mathbf{x} \in \mathbb{Z}^k : \langle \mathbf{x}, \mathbf{y} \rangle = 0 \bmod N \}$$

We want 
$$S^{\mathbf{y}}_{\alpha} := \Lambda_0(\mathbf{y}) \cap [-M, M]^k$$



Shortest vector problem!

In general,

$$\Lambda_{\alpha}(\mathbf{y}) := \{ \mathbf{x} \in \mathbb{Z}^k : \langle \mathbf{x}, \mathbf{y} \rangle = \alpha \bmod N \}$$

In general,

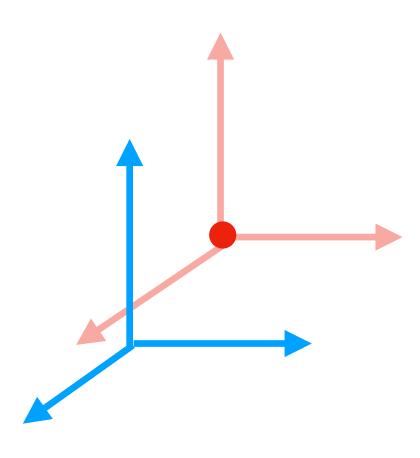
$$\Lambda_{\alpha}(\mathbf{y}) := \{ \mathbf{x} \in \mathbb{Z}^k : \langle \mathbf{x}, \mathbf{y} \rangle = \alpha \bmod N \}$$

is a lattice **coset** (not a lattice!)

In general,

$$\Lambda_{\alpha}(\mathbf{y}) := \{ \mathbf{x} \in \mathbb{Z}^k : \langle \mathbf{x}, \mathbf{y} \rangle = \alpha \bmod N \}$$

is a lattice **coset** (not a lattice!)



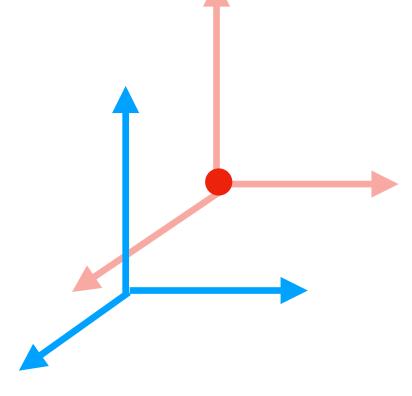
In general,

$$\Lambda_{\alpha}(\mathbf{y}) := \{ \mathbf{x} \in \mathbb{Z}^k : \langle \mathbf{x}, \mathbf{y} \rangle = \alpha \bmod N \}$$

is a lattice coset (not a lattice!)

We can characterize  $\Lambda_{\alpha}(\mathbf{y})$  using only one solution,  $x_{\alpha} \in \Lambda_{\alpha}(\mathbf{y})$  :

$$\Lambda_{\alpha}(\mathbf{y}) = x_{\alpha} + \Lambda_0(\mathbf{y})$$



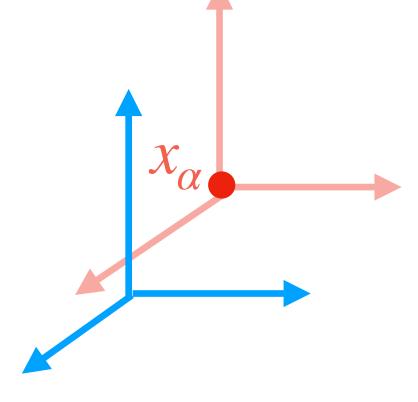
In general,

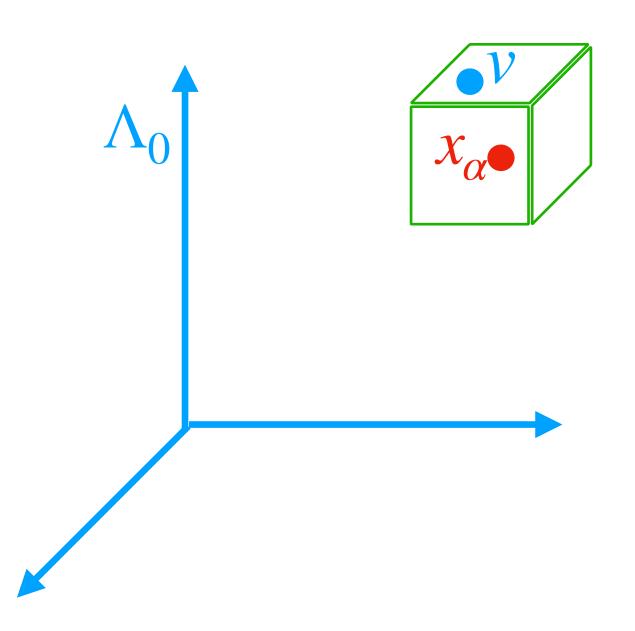
$$\Lambda_{\alpha}(\mathbf{y}) := \{ \mathbf{x} \in \mathbb{Z}^k : \langle \mathbf{x}, \mathbf{y} \rangle = \alpha \bmod N \}$$

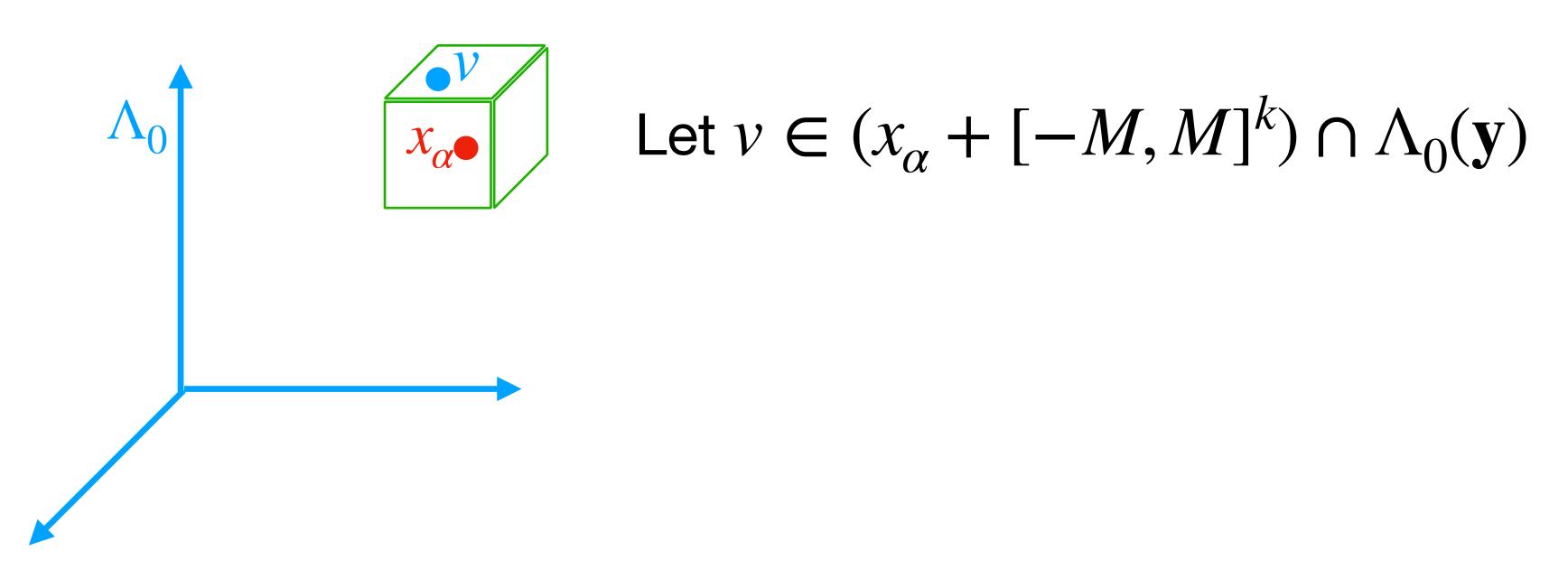
is a lattice **coset** (not a lattice!)

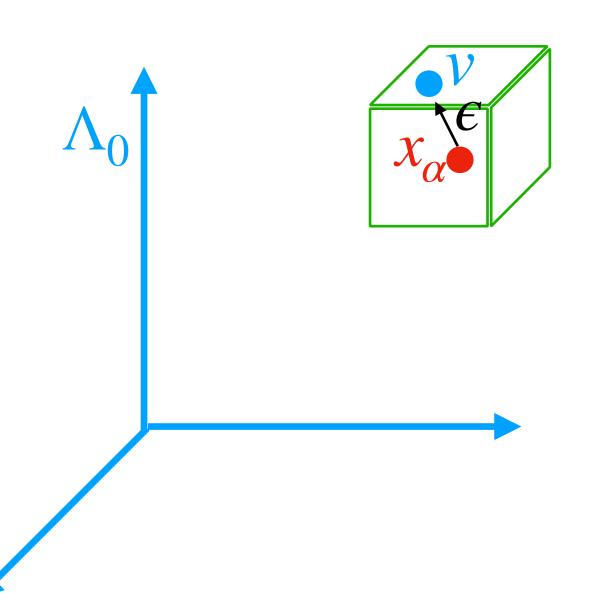
We can characterize  $\Lambda_{\alpha}(\mathbf{y})$  using only one solution,  $x_{\alpha} \in \Lambda_{\alpha}(\mathbf{y})$  :

$$\Lambda_{\alpha}(\mathbf{y}) = x_{\alpha} + \Lambda_0(\mathbf{y})$$



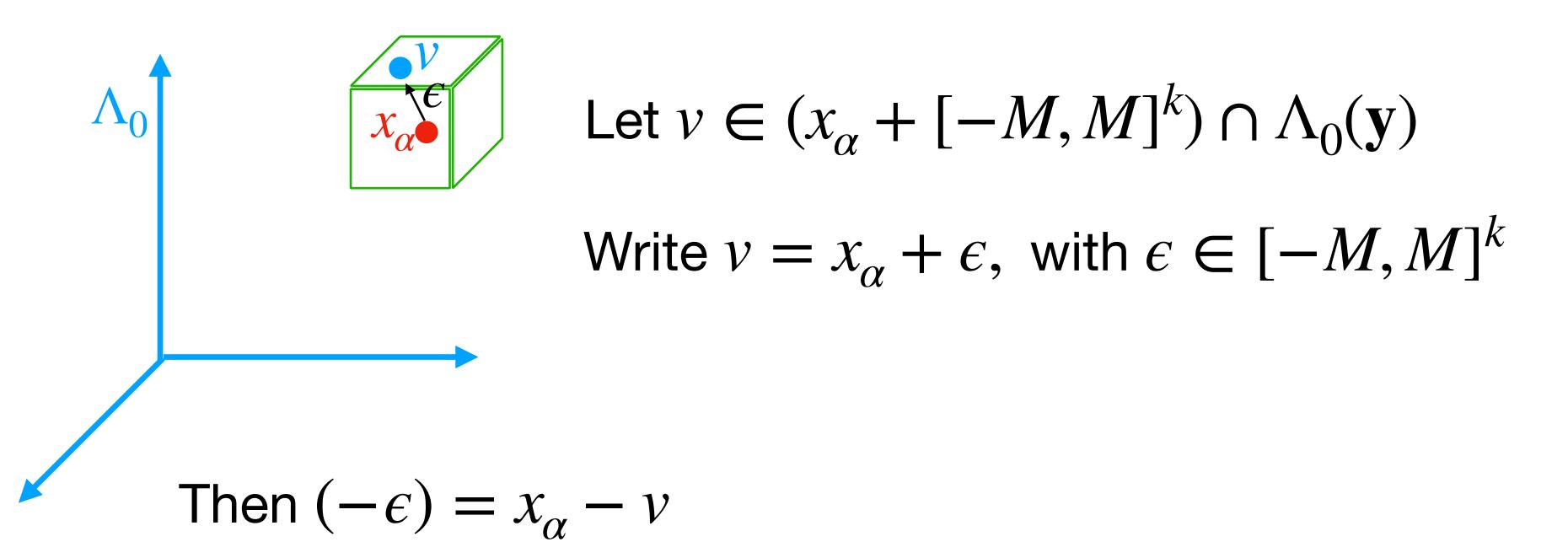


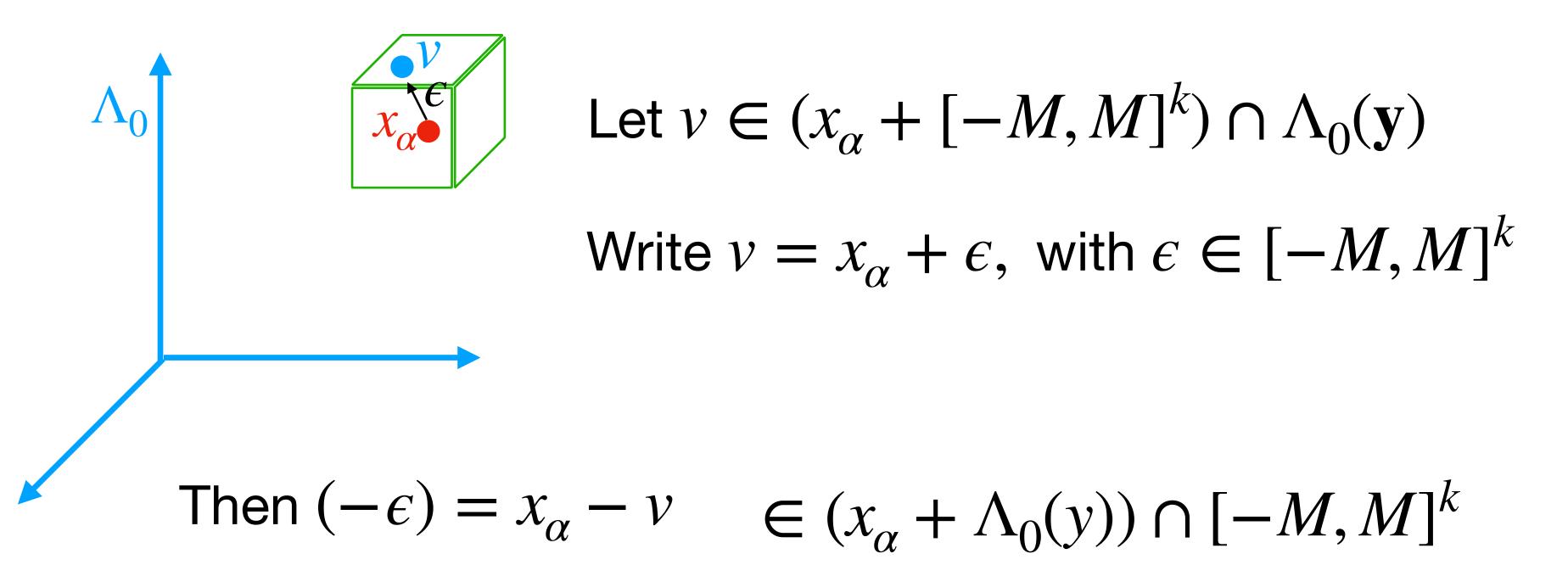


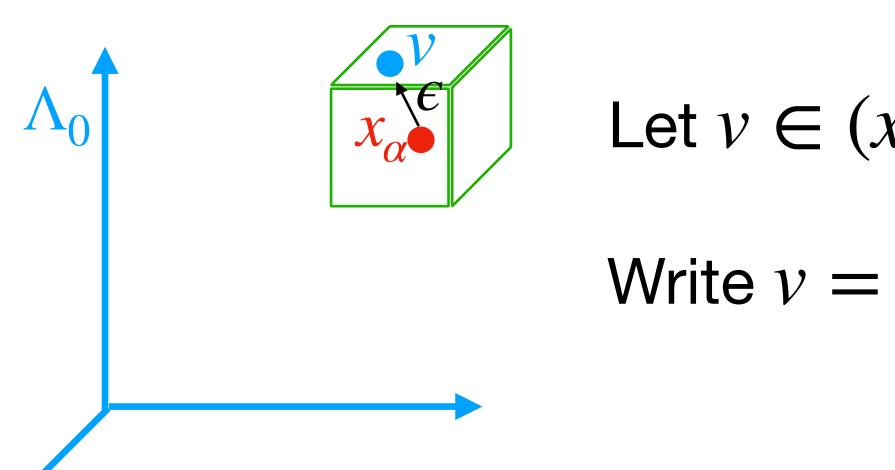


Let 
$$v \in (x_{\alpha} + [-M, M]^k) \cap \Lambda_0(\mathbf{y})$$

Write 
$$v = x_{\alpha} + \epsilon$$
, with  $\epsilon \in [-M, M]^k$ 





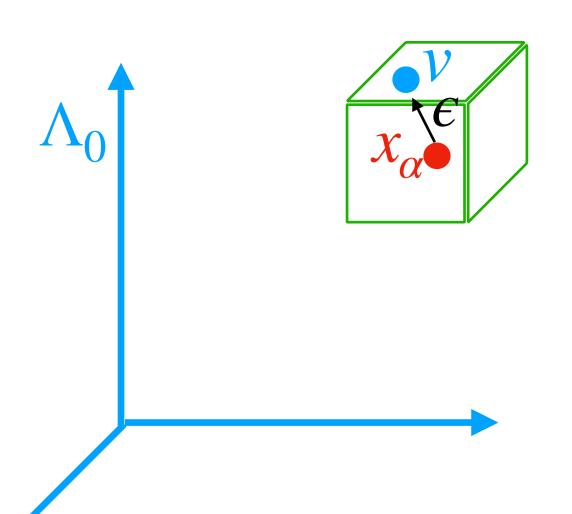


Let 
$$v \in (x_{\alpha} + [-M, M]^k) \cap \Lambda_0(\mathbf{y})$$

Write 
$$v = x_{\alpha} + \epsilon$$
, with  $\epsilon \in [-M, M]^k$ 

Then 
$$(-\epsilon) = x_\alpha - v$$
  $\in (x_\alpha + \Lambda_0(y)) \cap [-M, M]^k = \Lambda_\alpha(y) \cap [-M, M]^k$ 

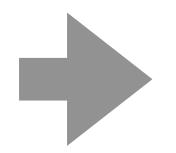
Claim : a "short" solution in  $\Lambda_{\alpha}(\mathbf{y})$  is the same as a vector in  $\Lambda_0(\mathbf{y})$  "close" to  $x_{\alpha}$ 



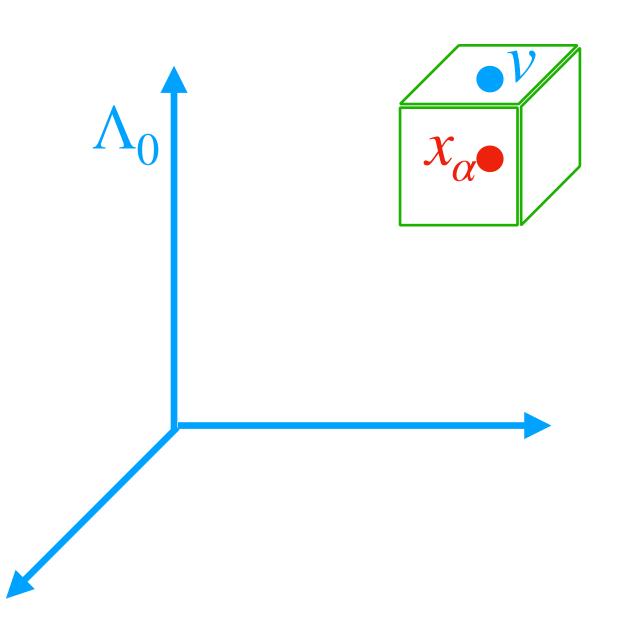
Let 
$$v \in (x_{\alpha} + [-M, M]^k) \cap \Lambda_0(\mathbf{y})$$

Write 
$$v = x_{\alpha} + \epsilon$$
, with  $\epsilon \in [-M, M]^k$ 

Then 
$$(-\epsilon) = x_\alpha - v$$
  $\in (x_\alpha + \Lambda_0(y)) \cap [-M, M]^k = \Lambda_\alpha(y) \cap [-M, M]^k$ 

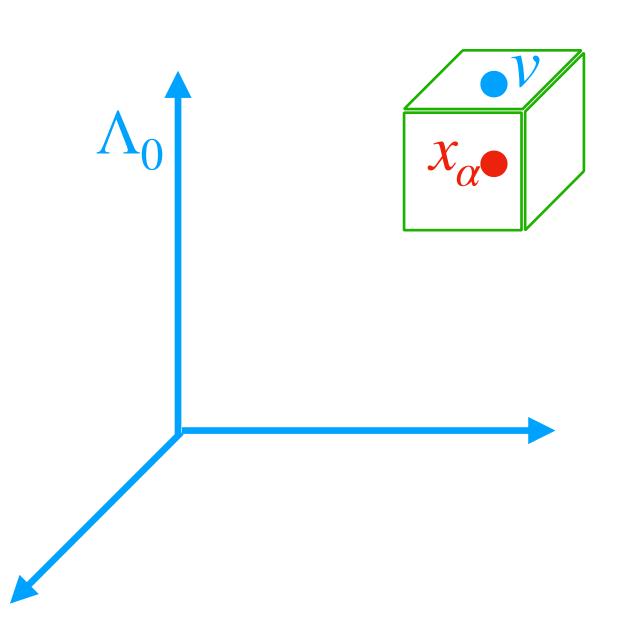


closest vector problem!



With A a basis of  $\Lambda_0$ , target vector  $x_{\alpha}$ ,

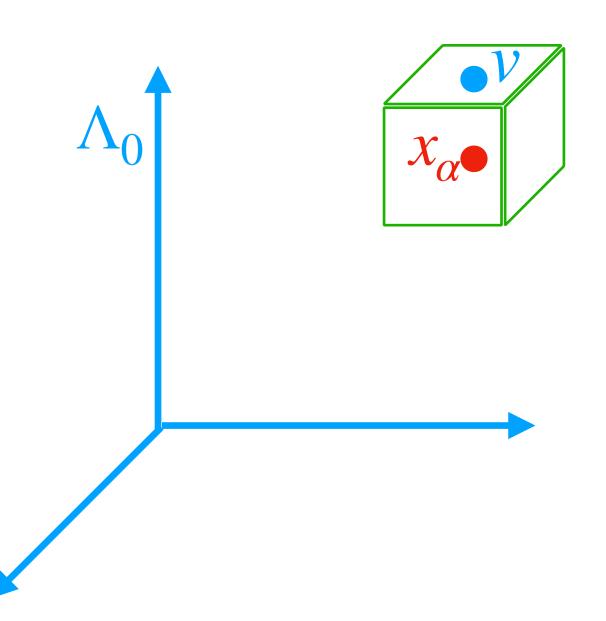
we want  $v \in \Lambda_0$  such that  $||v - x_\alpha||_\infty \le M$ 



With A a basis of  $\Lambda_0$ , target vector  $x_{\alpha}$ ,

we want  $v \in \Lambda_0$  such that  $||v - x_\alpha||_\infty \le M$ 

Define  $v_0 := \lfloor A^{-1}x_\alpha \rfloor$  (not a solution)



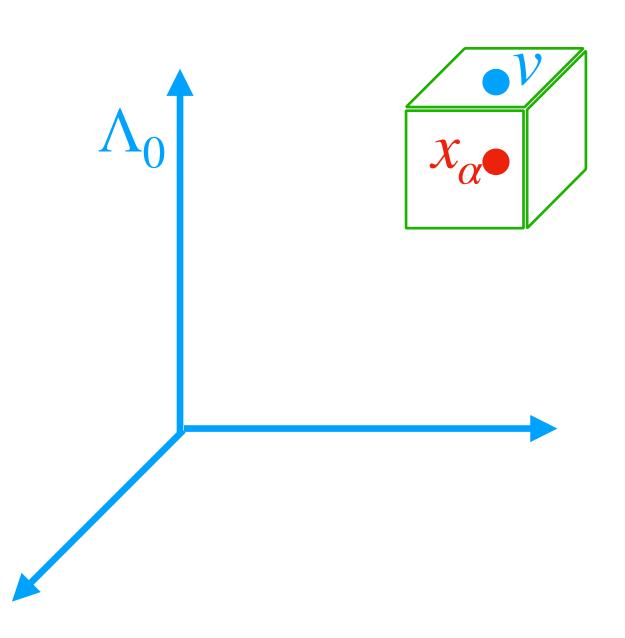
With A a basis of  $\Lambda_0$ , target vector  $x_{\alpha}$ ,

we want  $v \in \Lambda_0$  such that  $||v - x_\alpha||_\infty \le M$ 

Define  $v_0 := \lfloor A^{-1}x_\alpha \rfloor$  (not a solution)

For each v "close" to  $v_0$ :

Check if  $Av - x_{\alpha} \in [-M, M]^k$ 



With A a basis of  $\Lambda_0$ , target vector  $x_{\alpha}$ ,

we want  $v \in \Lambda_0$  such that  $||v - x_\alpha||_\infty \le M$ 

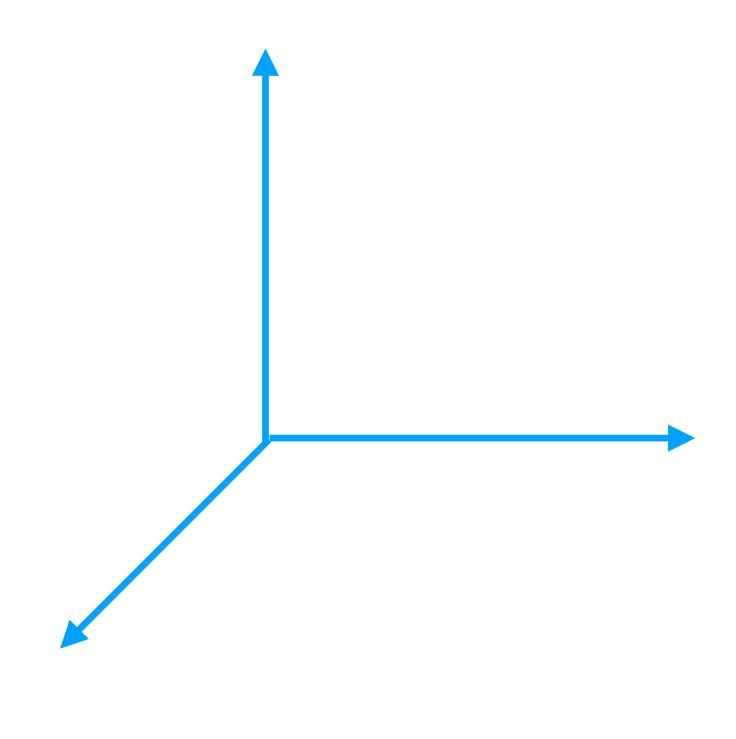
Define  $v_0 := [A^{-1}x_{\alpha}]$  (not a solution)

For each v "close" to  $v_0$ :

Check if  $Av - x_{\alpha} \in [-M, M]^k$ 

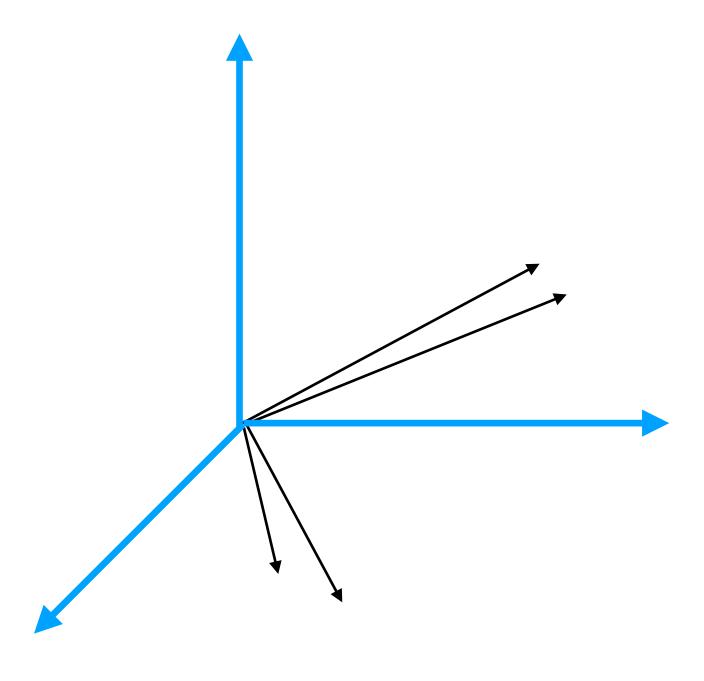
~ low memory, high gate count ~

0. Reduce to an SVP in dimension k+1



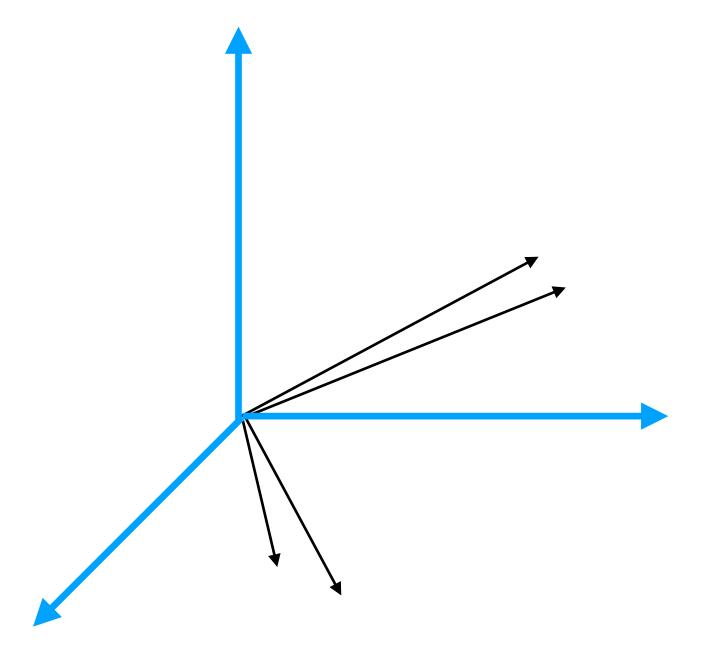
0. Reduce to an SVP in dimension k+1

1. List many vectors

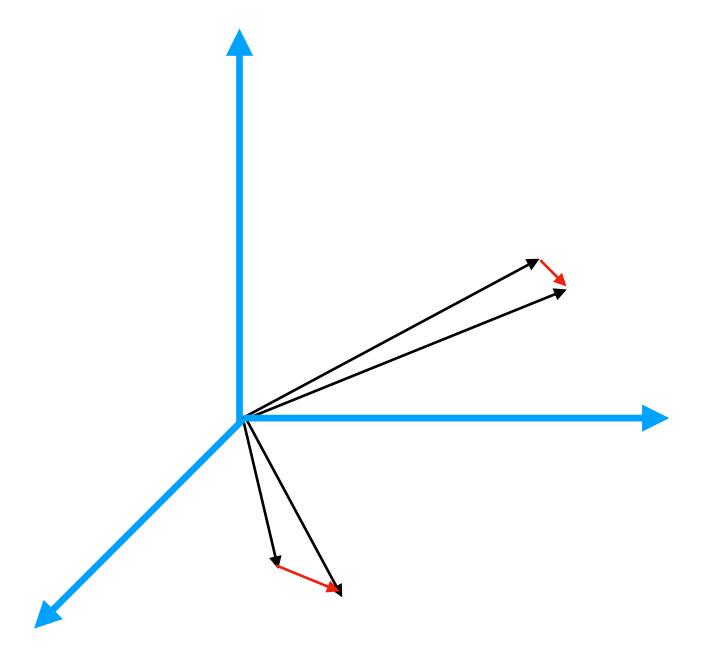


0. Reduce to an SVP in dimension k+1

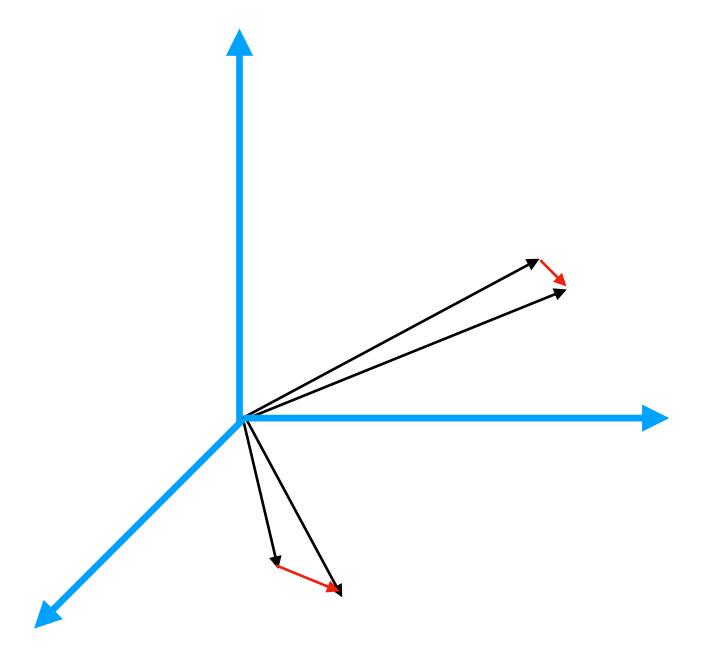
- 1. List many vectors
- 2. Subtract "close" vectors to obtain shorter vectors



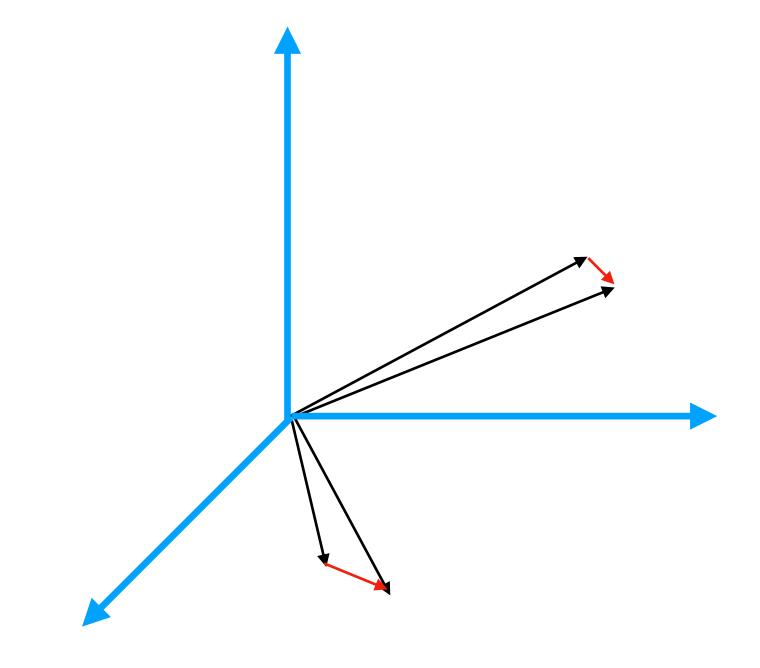
- 0. Reduce to an SVP in dimension k+1
- 1. List many vectors
- 2. Subtract "close" vectors to obtain shorter vectors



- 0. Reduce to an SVP in dimension k+1
- 1. List many vectors
- 2. Subtract "close" vectors to obtain shorter vectors
- 3. Repeat

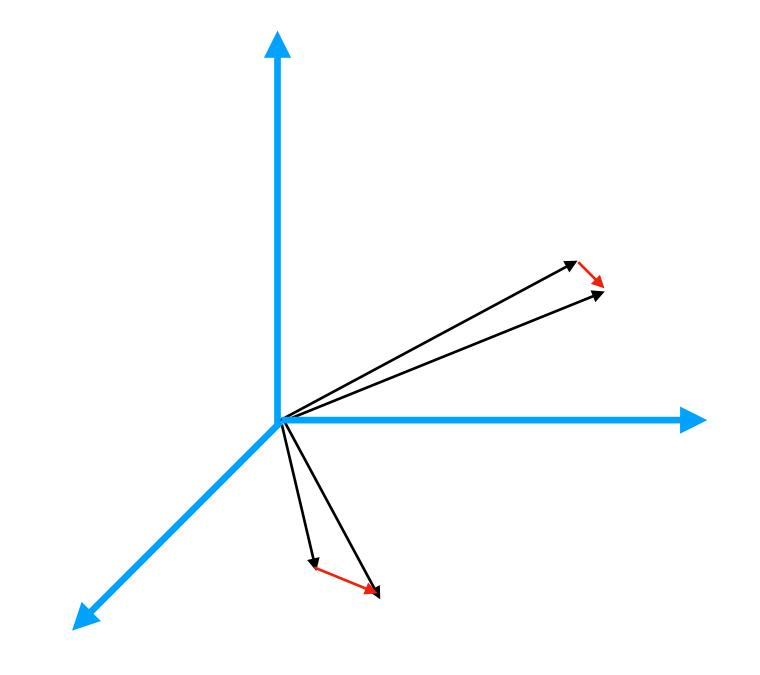


- 0. Reduce to an SVP in dimension k+1
- 1. List many vectors
- 2. Subtract "close" vectors to obtain shorter vectors
- 3. Repeat



Long lists  $\Longrightarrow$  large memory

- 0. Reduce to an SVP in dimension k+1
- 1. List many vectors
- 2. Subtract "close" vectors to obtain shorter vectors
- 3. Repeat



Long lists  $\Longrightarrow$  large memory

No QRAM necessary!! Only qubits

# Application to CSI-SharK

#### Childs-van Dam

| Group action cost estimate | Peikert [3] | М               | CvD+sieving | CvD+enum          |
|----------------------------|-------------|-----------------|-------------|-------------------|
| T-gates                    | T-gates     |                 | T-gates     | T-gates           |
| BLMP [1] 2 <sup>43.8</sup> | $2^{59.8}$  | $2^8$           | $2^{51.7}$  | $2^{73.9}$        |
|                            |             | $2^{12}$        | $2^{50.8}$  | 2 <sup>56.0</sup> |
|                            |             | 2 <sup>16</sup> | $2^{50.5}$  | 2 <sup>52.7</sup> |
| BS [2] 2 <sup>52.4</sup>   | $2^{68.4}$  | 28              | $2^{60}$    | $2^{73.9}$        |
|                            |             | $2^{12}$        | $2^{59.4}$  | $2^{56.7}$        |
|                            |             | $2^{16}$        | $2^{59.1}$  | $2^{56.4}$        |

<sup>[1]</sup> Bernstein, Lange, Martindale, Panny. Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies. Eurocrypt 2019.

<sup>[2]</sup> Bonnetain, Schrottenloher. Quantum security analysis of CSIDH. Eurocrypt 2020.

<sup>[3]</sup> Peikert. He gives c-sieves on the CSIDH. Eurocrypt 2020.

# In summary

#### Conclusion

(Childs)

CSI-SharK is less secure than expected

New cryptanalysis tool for multiple hidden shift problem :

Childs-van Dam (room for improvement)



ePrint 2025/376