Another Look at the Quantum
Security of the Vectorization
Problem with Shifted Inputs

Joint work with P. Frixons, V. Gilchrist, P. Kutas, S. Merz, C. Petit*, L. Pham
ePrint 2025/376

*slides inspired by Christophe’s. Thanks!

Vectorization problem with shifted inputs

Group actions are attractive for building post-quantum crypto

*x GXX—- X

If G is commutative, then DH follows naturally

Vectorization problem with shifted inputs

Underlying this scheme is the Vectorization problem

The Vectorization problem :

Given x and g % X, recover g.

-“core” DLP problem
-underlies CSIDH

Vectorization problem with shifted inputs

The Vectorization problem with shifted inputs: -variant of vectorization that

publishes more information

Given x, (¢;, |c:|g * x) and 2 % X, recover 2.
(! [l]g) J J -underlies CSI-SharK and BCP

How does the security compare to pure vectorization?

CSIDH

Choose a prime p

Let X = {supersingular curves defined over I]:p} (up to iIsomorphism)

For £ € X let Endkp(E) be the set of endomorphisms defined over |
Let G be the class group of End[Fp(E)

p

CSIDH

Choose a prime p

Let X = {supersingular curves defined over I]:p} (up to iIsomorphism)

For £ € X let Endkp(E) be the set of endomorphisms defined over |
Let G be the class group of End[Fp(E)

let ¢ be a generator of G

Then we can identify G with (Z, +) where N := | G|
g-x E=F

p

CSI-SharK

Based on the CSI-FiSh signature with id protocol:

CSI-SharK

Based on the CSI-FiSh signature with id protocol:

CSI-SharK

Based on the CSI-FiSh signature with id protocol:

CSI-SharK

Based on the CSI-FiSh signature with id protocol:

Yt
L 2

-the verifier sends challenge bit b

CSI-SharK

Based on the CSI-FiSh signature with id protocol:

Yt
L 2

-the verifier sends challenge bit b

-the prover sends u such that

CSI-SharK

Based on the CSI-FiSh signature with id protocol:

Yt
L 2

-soundness error 1/2

-the verifier sends challenge bit b

-the prover sends u such that

CSI-SharK

Based on the CSI-FiSh signature with id protocol:
-soundness error 1/2

-use multiple secret keys z; to reduce

Yt
soundness
Ez

-the verifier sends challenge bit b

-the prover sends u such that

CSI-SharK

Based on the CSI-FiSh signature with id protocol:

Y‘t
L 2

-soundness error 1/2

-use multiple secret keys z; to reduce

soundness

-use related keys e.g. z; = ¢;z7 to

-the verifier sends challenge bit reduce key size and facilitate secret

-the prover sends 1 such that sharing

CSI-SharK security

Given (E; = g““ % L, ¢;) for several i, compute Z.

co = 0, and it was suggested to use ¢; = i

CSI-SharK security

Given (E; = g““ % L, ¢;) for several i, compute Z.

co = 0, and it was suggested to use ¢; = i

Using only (£, E,) for some j # O is exactly Vectorization

CSI-SharK security

Given (E; = g““ % L, ¢;) for several i, compute Z.

co = 0, and it was suggested to use ¢; = i

Using only (£, E,) for some j # O is exactly Vectorization

If C | N then the problem can be reduced to a subgroup problem

CSI-SharK security

Given (E; = g““ % L, ¢;) for several i, compute Z.
co = 0, and it was suggested to use ¢; = i

Using only (£, E,) for some j # O is exactly Vectorization

If C | N then the problem can be reduced to a subgroup problem

If [V is prime, then is the problem as hard as Vectorization?

Quantum security of CSIDH

Shor does not apply and Grover is too slow

Instead, we can frame it as a hidden shift problem:

Let fy, /1 : G — X, such that for some z, we have f,(x) = f,(x — z) for all x.

' Given black box access to f,, f;, compute z.

Quantum security of CSIDH

Shor does not apply and Grover is too slow

Instead, we can frame it as a hidden shift problem:

Let fy, /1 : G — X, such that for some z, we have f,(x) = f,(x — z) for all x.

' Given black box access to f,, f;, compute z.

For CSIDH we may define functions

fo: &' 8" * (g° % E),
fiig'— g *xE

Kuperberg

High level recipe :

1. Create and label objects

Y, | ()

2. “Combine” “good” objects

(x =), | flx=y))

3. Extract

[1] Regev. A subexponential time algorithm for the dihedral

hidden subgroup problem with polynomial space. 2004

Kuperberg
Example [1]: N = 2"

1. Create and label objects

2. “Combine” “good” objects

3. Extract

[1] Regev. A subexponential time algorithm for the dihedral

hidden subgroup problem with polynomial space. 2004

Kuperberg
Example [1]: N = 2"

1. Create and label objects
vy, | 0) 4+ e | 1) (7 is secret)

2. “Combine” “good” objects

3. Extract

[1] Regev. A subexponential time algorithm for the dihedral

hidden subgroup problem with polynomial space. 2004

Kuperberg
Example [1]: N = 2"

1. Create and label objects
vy, | 0) 4+ e | 1) (7 is secret)

2. “Combine” “good” objects

Via tensoring : y, — y;, | 0) + e@#M027v0) | 1)

3. Extract

[1] Regev. A subexponential time algorithm for the dihedral

hidden subgroup problem with polynomial space. 2004

Kuperberg
Example [1]: N = 2"
1. Create and label objects

vy, | 0) 4+ e | 1) (7 is secret)

2. “Combine” “good” objects

Via tensoring : y, — y;, | 0) + e@#M027v0) | 1)

3. Extract

After enough repetitions, we get a label equal to 2”_1, SO :

‘O) 4 e(27zi/N)22”_1 ‘ 1> — ‘O) 4 eﬂiz‘ 1>

Measuring (in the Hadamard basis) gives 7

Cost of running Kuperberg

Subexponential complexity

Cost of a quantum attack on CSIDH was estimated by Peikert

— One group action evaluation is expensive,
and requires sub exponentially many

Childs-van Dam algorithm

Context

Suppose access to pairs (£; = g% % Ey, 1) fori € [0O,M]

Context

Suppose access to pairs (£; = g% % Ey, 1) fori € [0O,M]

In the CSIDH setting, we can twist efficiently: i.e. compute El.t = g% % Ey=FE

—1

Context

Suppose access to pairs (£; = g% % Ey, 1) fori € [0O,M]

In the CSIDH setting, we can twist efficiently: i.e. compute El.t = g% % Ey=FE

—1

This implies access to pairs (E; = g % E,, i) fori € [-M, M]

Context
Suppose access to pairs (£; = g% % Ey, 1) fori € [0O,M]

—1

In the CSIDH setting, we can twist efficiently: i.e. compute El.t = g% % Ey=FE

This implies access to pairs (E; = g % E,, i) fori € [-M, M]

Definef: [-M,M| X Zy — X
(i,x) =» g" *x E_,

Context

Suppose access to pairs (£; = g% % Ey, 1) fori € [0O,M]

In the CSIDH setting, we can twist efficiently: i.e. compute El.t = g% % Ey=FE

—1

This implies access to pairs (E; = g % E,, i) fori € [-M, M]

Definef: [-M,M| X Zy — X
(i,x) =» g" *x E_,

— fi,x) =g¢g*' % E

—1

Context

Suppose access to pairs (£; = g% % Ey, 1) fori € [0O,M]
In the CSIDH setting, we can twist efficiently: i.e. compute E; := g% % Ey=FE

—1

This implies access to pairs (E; = g % E,, i) fori € [-M, M]

Definef: [-M,M| X Zy — X
(i,x) =» g" *x E_,

— fli,x) =g"*E_; =g % (g7 % Ep)

Context

Suppose access to pairs (£; = g% % Ey, 1) fori € [0O,M]
In the CSIDH setting, we can twist efficiently: i.e. compute E; := g% % Ey=FE

—1

This implies access to pairs (E; = g % E,, i) fori € [-M, M]

Definef: [-M,M| X Zy — X
(i,x) =» g" *x E_,

— f(l,X) — gx*E_i — gx* (g—iz *EO) — gx—iz *EO

Context

Suppose access to pairs (£; = g% % Ey, 1) fori € [0O,M]
In the CSIDH setting, we can twist efficiently: i.e. compute E; := g% % Ey=FE

—1

This implies access to pairs (E; = g % E,, i) fori € [-M, M]

Definef: [-M,M| X Zy — X
(i,x) =» g" *x E_,

— fi,x) =g " *xE_, =g % (g_iZ *x Ey) = gx_iZ *x by = f(0,x — i7)

Context

Suppose access to pairs (£; = g% % Ey, 1) fori € [0O,M]

In the CSIDH setting, we can twist efficiently: i.e. compute El.t = g% % Ey=L_;

—1

This implies access to pairs (E; = g % E,, i) fori € [-M, M]

Definef: [-M,M| X Zy — X
(i,x) =» g" *x E_,

“generalized”

hidden shift

— fi,x) =g " *xE_, =g % (g_iZ *x Ey) = gx_iZ *x by = f(0,x — i7)

Childs-van Dam algorithm

1. Create and label objects

Apply BuildSuperposition to get (with known label, yj)

Yo 02, i)

iy i, €E[—M,M)

Childs-van Dam algorithm

2. “Combine” “good” objects

Compute o := Z l:]-yj mod N in a new register to get

] D 0%i, . i)

l1,... . E[—M,M]

Childs-van Dam algorithm

2. “Combine” “good” objects

Compute o := Z l:]-yj mod N in a new register to get

] D 0%i, . i)

l1,... . E[—M,M]

Apply Knapsack to get a state close to

Z 0*|0,...0) | a)

acs y

Childs-van Dam algorithm

3. Extract
Apply QFT inverse over Z,, on last register to get a state close to

10,...0)|2)

Measure last register and check answer

Subroutines

BuildSuperposition : can be computed using QFTs

Subroutines

BuildSuperposition : can be computed using QFTs

Knapsack : CvD solves using integer programming

-asymptotic complexity, out-dated solution

Knapsack

Recall,

Given yy, ...y, @, N, we want to compute -infinity norm

. : -average case V.S. wWorst case
Iy, ..., € |—M, M| such that 9

-target a in superposition

Z ;y; = a mod N
- -the Y classical, known

Knapsack

When a = 0,

Knapsack

When a = 0,
Ao(y) ;= {x € Z*: (x,y) = 0 mod N}

Knapsack

When a = 0,
Ao(y) ;= {x € Z*: (x,y) = 0 mod N}

We want SY := A (y) N [-M, M]*

Knapsack

When a = 0,
Ao(y) := {x € ZF: (x,y) = 0 mod N}

We want SY := A (y) N [-M, M]*

Knapsack

When a = 0,
Ao(y) := {x € ZF: (x,y) = 0 mod N}

We want SY := Ay(y) N [-M, M]*

Knapsack

When a = 0,
Ao(y) := {x € ZF: (x,y) = 0 mod N}

We want SY := Ay(y) N [-M, M]*

Shortest vector problem!

Knapsack

In general,
A(y) = {x € Z":(x,y) = a mod N}

Knapsack

In general,
A(y) = {x € Z":(x,y) = a mod N}

IS a lattice coset (not a lattice!)

Knapsack

In general,
A(y) = {x € Z":(x,y) = a mod N}

IS a lattice coset (not a lattice!)

s

Knapsack

In general,
A(y) = {x € Z":(x,y) = a mod N}

IS a lattice coset (not a lattice!)

We can characterize A (y) using only one solution, x, € A _(Y) :

NLY) = x, + Ap(Y)

Knapsack

In general,
A(y) = {x € Z":(x,y) = a mod N}

IS a lattice coset (not a lattice!)

We can characterize A (y) using only one solution, x, € A _(Y) :

NLY) = x, + Ap(Y)

Knapsack

Claim : a “short” solution in A_(y) is the same as a vector in Ay (y) “close” to x,,

4
X

|,

Knapsack

Claim : a “short” solution in A_(y) is the same as a vector in Ay (y) “close” to x,,

4
X @ [/ Let v € (Xa + [_Ma M]k) M AO(y)

Knapsack

Claim : a “short” solution in A_(y) is the same as a vector in Ay (y) “close” to x,,

N X, ﬁ Letv € (x, + [—M, M]k) N Ay(y)

Write v = x, + €, withe € [—M, M1*

Knapsack

Claim : a “short” solution in A_(y) is the same as a vector in Ay (y) “close” to x,,

ﬁ Let v € (x, + [—-M, M]*) N Ay(y)

Write v = x, + €, withe € [—M, M1*

Then (—¢) =x, — Vv

Knapsack

Claim : a “short” solution in A_(y) is the same as a vector in Ay (y) “close” to x,,

ﬁ Let v € (x, + [—-M, M]*) N Ay(y)

Write v = x, + €, withe € [—M, M1*

Then(—¢)=x,—Vv ¢ (x, + Ag¥)) N [—M, M*

Knapsack

Claim : a “short” solution in A_(y) is the same as a vector in Ay (y) “close” to x,,

ﬁ Let v € (x, + [—-M, M]*) N Ay(y)

Write v = x, + €, withe € [—M, M1*

Then (=€) =x,—v € (x,+AM)N[-M,M]* =A(y)n[-M, M|

Knapsack

Claim : a “short” solution in A_(y) is the same as a vector in Ay (y) “close” to x,,

ﬁ Let v € (x, + [—-M, M]*) N Ay(y)

Write v = x, + €, withe € [—M, M1*

Then (=€) =x,—v € (x,+AM)N[-M,M]* =A(y)n[-M, M|

closest vector problem!

Enumeration

With A a basis of A, target vector x,

we wantv € Agsuchthat ||[v—x |, <M

Enumeration

With A a basis of A, target vector x,

we wantv € Agsuchthat ||[v—x |, <M

Define v, := |A7!x,] (not a solution)

Enumeration

With A a basis of A, target vector x,

we wantv € Agsuchthat ||[v—x |, <M

Define v, := |A7!x,] (not a solution)

For each v “close” to v :

Check if Av — x, € [-M, M]*

Enumeration

With A a basis of A, target vector x,

we wantv € Agsuchthat ||[v—x |, <M

Define v, := |A7!x,] (not a solution)

For each v “close” to v :

Check if Av — x, € [-M, M]*

~ low memory, high gate count ~

Sieving

0. Reduce to an SVP in dimension k + 1

Sieving

0. Reduce to an SVP in dimension k + 1

1. List many vectors

Sieving

0. Reduce to an SVP in dimension k + 1

1. List many vectors

2. Subtract “close” vectors to
obtain shorter vectors

Sieving

0. Reduce to an SVP in dimension k + 1

1. List many vectors

2. Subtract “close” vectors to
obtain shorter vectors

Sieving

0. Reduce to an SVP in dimension k + 1

1. List many vectors

2. Subtract “close” vectors to
obtain shorter vectors

3. Repeat

Sieving

0. Reduce to an SVP in dimension k + 1

1. List many vectors

2. Subtract “close” vectors to
obtain shorter vectors

3. Repeat

Long lists = large memory

Sieving

0. Reduce to an SVP in dimension k + 1

1. List many vectors

2. Subtract “close” vectors to
obtain shorter vectors

3. Repeat

Long lists = large memory

No QRAM necessary!! Only qubits

Application to CSI-SharK

Childs-van Dam

Group qctlon cost Peikert [3] CvD+sieving CvD+enum
estimate M
T-gates T-gates T-gates T-gates
78 517 273.9
BLMP [1] 159.8
. 56.0
143.8 2" 220 :
16 50.5 2327
28 260 273.9
BS [2] 268.4
5524 212 2 2
16 159.1 156.4

1] Bernstein, Lange, Martindale, Panny. Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies. Eurocrypt 2019.

2] Bonnetain, Schrottenloher. Quantum security analysis of CSIDH. Eurocrypt 2020.

3] Peikert. He gives c-sieves on the CSIDH. Eurocrypt 2020.

In summary

Conclusion

-
w N
E
n =5
W=
= <
(¥ W]
=5 =
T <
=

SharK is less secure than expected

— CS|

THERE CAN ONLY

BE ONE KING.

— New cryptanalysis tool for multiple hidden shift problem :

Childs-van Dam (room for improvement)

ePrint 2025/376

