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Group actions are attractive for building post-quantum crypto

⋆ : G × X → X

If  is commutative, then DH follows naturallyG

Vectorization problem with shifted inputs



Vectorization problem with shifted inputs

The Vectorization problem :

Given  and , recover .x g ⋆ x g

-“core” DLP problem
-underlies CSIDH

Underlying this scheme is the Vectorization problem



Vectorization problem with shifted inputs

The Vectorization problem with shifted inputs:

Given  and , recover .x, (ci, [ci]g ⋆ x) g ⋆ x g

-variant of vectorization that 


  publishes more information

-underlies CSI-SharK and BCP

How does the security compare to pure vectorization?
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Choose a prime p
Let X = {supersingular curves defined over 𝔽p} (up to isomorphism)

For  let  be the set of endomorphisms defined over E ∈ X End𝔽p
(E) 𝔽p

Let  be the class group of G End𝔽p
(E)

Then we can identify  with  where G (ℤN, + ) N := |G |

gz ⋆ E = E′￼

let  be a generator of g G
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CSI-SharK

Based on the CSI-FiSh signature with id protocol:

E0 E1
⋆ z

E2

⋆ t

-the verifier sends challenge bit b

-the prover sends  such that 

  

u
E2 = u ⋆ Eb

-soundness error 1/2

-use multiple secret keys  to reduce


  soundness

zi

-use related keys e.g.  to 


  reduce key size and facilitate secret 

  sharing

zi = ciz
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CSI-SharK security

Given ( , ) for several , compute .Ei = gciz ⋆ E0 ci i z

, and it was suggested to use c0 = 0 ci = i

Using only  for some  is exactly Vectorization(E0, Ej) j ≠ 0

If  then the problem can be reduced to a subgroup problemci ∣ N

If  is prime, then is the problem as hard as Vectorization?N
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Quantum security of CSIDH
Shor does not apply and Grover is too slow

Instead, we can frame it as a hidden shift problem:

Let , such that for some , we have  for all .f0, f1 : G → X z f1(x) = f0(x − z) x

Given black box access to , compute .f0, f1 z

f0: g′￼ ↦ g′￼⋆ (gz ⋆ E),
f1: g′￼ ↦ g′￼⋆ E

For CSIDH we may define functions



Kuperberg

1. Create and label objects

2. “Combine” “good” objects

3. Extract

y, | f(y)⟩

(x − y), | f(x − y)⟩

High level recipe :
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Kuperberg

1. Create and label objects

2. “Combine” “good” objects

3. Extract

Example [1]: N = 2n

[1] Regev. A subexponential time algorithm for the dihedral  
hidden subgroup problem with polynomial space. 2004

y, |0⟩ + e(2πi/N)zy |1⟩

Via tensoring : y2 − y1, |0⟩ + e(2πi/N)z(y2−y1) |1⟩

After enough repetitions, we get a label equal to , so :2n−1

|0⟩ + e(2πi/N)z2n−1 |1⟩ = |0⟩ + eπiz |1⟩

Measuring (in the Hadamard basis) gives z

(  is secret)z



Cost of running Kuperberg

Subexponential complexity

Cost of a quantum attack on CSIDH was estimated by Peikert

— One group action evaluation is expensive, 

and requires sub exponentially many



Childs-van Dam algorithm
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Context
Suppose access to pairs  for (Ei = giz ⋆ E0, i) i ∈ [0,M]

In the CSIDH setting, we can twist efficiently: i.e. compute Et
i := g−iz ⋆ E0 = E−i

This implies access to pairs  for (Ei = giz ⋆ E0, i) i ∈ [−M, M]

Define f : [−M, M] × ℤN → X
(i, x) ↦ gx ⋆ E−i

⟹ f(i, x) = gx ⋆ E−i

“generalized”


hidden shift

= gx ⋆ (g−iz ⋆ E0) = gx−iz ⋆ E0 = f(0,x − iz)



Childs-van Dam algorithm

Apply BuildSuperposition to get (with known label, ) yj

∑
i1,…ik∈[−M,M]

ω ∑j ijyjz | i1, …ik⟩

1. Create and label objects
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Childs-van Dam algorithm

Compute  in a new register to getα := ∑
j

ijyj mod N

∑
i1,…ik∈[−M,M]

ωαz | i1, …ik⟩ |α⟩

2. “Combine” “good” objects

Apply Knapsack to get a state close to

∑
α∈ℤN

ωαz |0,…0⟩ |α⟩



Childs-van Dam algorithm

Apply QFT inverse over  on last register to get a state close toℤN

|0,…0⟩ |z⟩

Measure last register and check answer

3. Extract
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Subroutines

BuildSuperposition : can be computed using QFTs

Knapsack : CvD solves using integer programming

-asymptotic complexity, out-dated solution



Knapsack

∑
j

ijyj = α mod N

Recall,

Given we want to compute


   such that

y1, …yk, α, N,

i1, …ik ∈ [−M, M]

-infinity norm

-average case v.s. worst case

-target  in superpositionα

-the  classical, knownyj
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Knapsack
When ,α = 0

Λ0(y) := {x ∈ ℤk : ⟨x, y⟩ = 0 mod N}

We want Sy
α := Λ0(y) ∩ [−M, M]k

Shortest vector problem!
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Λα(y) = xα + Λ0(y)
We can characterize  using only one solution,  : Λα(y) xα ∈ Λα(y)

Λα(y) := {x ∈ ℤk : ⟨x, y⟩ = α mod N}
In general,

is a lattice coset (not a lattice!)

xα
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xα

Claim : a “short” solution in  is the same as a vector in  “close” to Λα(y) Λ0(y) xα

Let v ∈ (xα + [−M, M]k) ∩ Λ0(y)

Write v = xα + ϵ,  with ϵ ∈ [−M, M]k

v

Then (−ϵ) = xα − v ∈ (xα + Λ0(y)) ∩ [−M, M]k

Λ0
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Knapsack

xα

Claim : a “short” solution in  is the same as a vector in  “close” to Λα(y) Λ0(y) xα

Let v ∈ (xα + [−M, M]k) ∩ Λ0(y)

Write v = xα + ϵ,  with ϵ ∈ [−M, M]k

v

Then (−ϵ) = xα − v ∈ (xα + Λ0(y)) ∩ [−M, M]k = Λα(y) ∩ [−M, M]k

Λ0
ϵ



Knapsack

xα

Claim : a “short” solution in  is the same as a vector in  “close” to Λα(y) Λ0(y) xα

Let v ∈ (xα + [−M, M]k) ∩ Λ0(y)

Write v = xα + ϵ,  with ϵ ∈ [−M, M]k

v

Then (−ϵ) = xα − v ∈ (xα + Λ0(y)) ∩ [−M, M]k = Λα(y) ∩ [−M, M]k

closest vector problem!

Λ0
ϵ
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Enumeration
With  a basis of , target vector ,


we want  such that 

A Λ0 xα

v ∈ Λ0 ∥v − xα∥∞ ≤ M
xα

v

Define  (not a solution)v0 := ⌊A−1xα⌉

For each  “close” to  : v v0

Check if Av − xα ∈ [−M, M]k

Λ0

~ low memory, high gate count ~



Sieving

0. Reduce to an SVP in dimension k + 1



Sieving

1. List many vectors

0. Reduce to an SVP in dimension k + 1



Sieving

1. List many vectors

2. Subtract “close” vectors to 

    obtain shorter vectors

0. Reduce to an SVP in dimension k + 1



Sieving

1. List many vectors

2. Subtract “close” vectors to 

    obtain shorter vectors

0. Reduce to an SVP in dimension k + 1



Sieving

1. List many vectors

2. Subtract “close” vectors to 

    obtain shorter vectors
3. Repeat

0. Reduce to an SVP in dimension k + 1



Sieving

1. List many vectors

2. Subtract “close” vectors to 

    obtain shorter vectors
3. Repeat

Long lists  large memory⟹

0. Reduce to an SVP in dimension k + 1



Sieving

1. List many vectors

2. Subtract “close” vectors to 

    obtain shorter vectors
3. Repeat

Long lists  large memory⟹

No QRAM necessary!! Only qubits

0. Reduce to an SVP in dimension k + 1



Application to CSI-SharK



Group action cost 
estimate

Peikert [3]
M

CvD+sieving CvD+enum

T-gates T-gates T-gates T-gates

Childs-van Dam

243.8

BLMP [1]

252.4

BS [2]

259.8

268.4

28

212

216

28

212

216

251.7

250.8

250.5

273.9

256.0

252.7

260

259.4

259.1

273.9

256.7

256.4

[1] Bernstein, Lange, Martindale, Panny. Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies. Eurocrypt 2019.
[2] Bonnetain, Schrottenloher. Quantum security analysis of CSIDH. Eurocrypt 2020.
[3] Peikert. He gives c-sieves on the CSIDH. Eurocrypt 2020.



In summary



Conclusion

— CSI-SharK is less secure than expected

— New cryptanalysis tool for multiple hidden shift problem : 


Childs-van Dam (room for improvement)
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